Safe Gap-based Planning in Dynamic Settings

Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

Abstract This chapter extends the family of perception-informed gap-based local
planners to dynamic environments. Existing perception-informed local planners that
operate in dynamic environments often rely on emergent or empirical robustness for
collision avoidance as opposed to performing formal analysis of dynamic obstacles.
This proposed planner, dynamic gap, explicitly addresses dynamic obstacles through
several steps in the planning pipeline. First, polar regions of free space known as
gaps are tracked and their dynamics are estimated in order to understand how the
local environment evolves over time. Then, at planning time, gaps are propagated
into the future through novel gap propagation algorithms to understand what regions
are feasible for passage. Lastly, pursuit guidance theory is leveraged to generate
local trajectories that are provably collision-free under ideal conditions. Addition-
ally, obstacle-centric ungap processing is performed in situations where no gaps
exist to robustify the overall planning framework. A set of gap-based planners are
benchmarked against a series of classical and learned motion planners in dynamic
environments, and dynamic gap is shown to outperform all other baselines in all
environments. Furthermore, dynamic gap is deployed on a TurtleBot2 platform in
several real-world experiments to validate collision avoidance behaviors.

M. Asselmeier - A. Zaro - Y. Zhao - P. A. Vela

Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta,
GA 30308. e-mail: mass@gatech.edu, azaro3@gatech.edu, yzhao301l@gatech. edu, pvela@
gatech.edu

D. Ahuja
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA
30308. e-mail: dahuja8@gatech.edu

This work supported in part by NSF Award #2235944. The work of Max Asselmeier is supported
by the NSF Graduate Research Fellowship under Grant No. DGE-2039655. Any opinion, findings,
and conclusions or recommendations expressed in this material are those of the authors(s) and do
not necessarily reflect the views of the National Science Foundation.

mass@gatech.edu, azaro3@gatech.edu, yzhao301@gatech.edu, pvela@gatech.edu
mass@gatech.edu, azaro3@gatech.edu, yzhao301@gatech.edu, pvela@gatech.edu
dahuja8@gatech.edu

2 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

Acronyms

A3C Asynchronous Advantage Actor-Critic

CADRL Collision Avoidance with Deep Reinforcement Learning
CoHAN Co-operative Human-aware Navigation

DRL-VO Deep Reinforcement Learning - Velocity Obstacles

DGap Dynamic Gap

DWA Dynamic Window Approach

FOV Field of View

GBP Gap-based Planner

HA Hungarian Algorithm

ICP Iterative Closest Point

IQA Iterative Quaternion Averaging

KF Kalman Filter

LfLH Learning from Learned Hallucination
LSTM Long Short-Term Memory

MPC Model Predictive Control

ORCA Optimal Reciprocal Collision Avoidance
PN Parallel Navigation

PGap Potential Gap

PRM Probabilistic Roadmap

PPO Proximal Policy Optimization

PP Pure Pursuit

RRT Rapidly-exploring Random Trees
RVO Reciprocal Velocity Obstacles

RA Rectangular Assignment

RLCA Reinforcement Learning for Collision Avoidance
ROS Robot Operating System

TEB Timed Elastic Bands

VO Velocity Obstacles

1 Introduction

The family of gap-based planners (GBP) offers a free space-based approach to
real-time navigation in previously unseen environments. GBPs seek to leverage the
environmental affordances [1] available to the robot and restrict all planning efforts to
these free regions, or gaps, in the environment. In the literature, this family of planners
has shown great promise due to their ability to provide safety guarantees [2] under
ideal assumptions including full field-of-view (FOV) sensing, first-order holonomic
dynamics, and point-mass geometry. Beyond these ideal conditions, GBPs have still
provided impressive navigation performance given restricted FOVs [2], noncircular
robot geometries [3], and nonholonomic dynamics [4].

Safe Gap-based Planning in Dynamic Settings 3

Despite this success, GBPs have only been extended to handling dynamic obstacle
avoidance very recently [5, 6], a challenge that accurately reflects the previously
unseen and constantly changing environments found in real life. Typically, local
motion planners are designed with static environments in mind. Then, when the
time comes to deploy these planners in dynamic real-world settings, the planners are
often run with the hopes of high enough planning rates enabling sufficient reactive
collision avoidance. However, relying on these emergent or empirical behaviors
limits planner performance. It is more meaningful to design a planner with dynamic
settings in mind, but this often requires each and every step of the planning pipeline to
be revisited to account for these relaxed assumptions. In static settings, the currently
available free space will remain as free space for all time. Naturally, the same applies
for obstacle space. In dynamic settings, free space can turn into obstacle space, and
vice-versa. If a motion planner is to fully exploit its environmental affordances, then
both of these possibilities must explicitly be accounted for.

Fig. 1 Visualization of the dynamic gap planner.
The black disk is the ego-robot and gray disks
are dynamic agents. Transparent gray disks are
future agent positions. Bold colored arcs labeled
A-E are the instantaneous set of gaps. Transparent
arcs are the predicted gaps obtained by propagat-
ing the gap dynamics models, shown as arrows,
forward. Dashed lines are the candidate trajecto-
ries and the gap goals are colored points within
the gap spans. The pink gap tube labeled D, which
is comprised of all present and future pink gap
arcs, is predicted to close as agents 2 and 3 cross
each other. However, this gap will reopen, repre-
sented by the transparent pink arc. The gap tube
trajectory plans up to the gap closure, idles in
place while the gap is closed, and then contin-
ues through the reopened gap. Ungap trajectories,
represented as gray dashed lines, are synthesized
in the receding ungaps formed by agents 1 and 2.

To date, GBPs designed for dynamic settings [5, 6] have not been perception-
informed, instead opting to rely on ground truth state information regarding other
agents in the local environment. The intention of this proposed work is to design
a perception-informed GBP for dynamic settings in order to explicitly account for
both sensor data artifacts and potentially evolving environments. In [7], the authors
introduced an initial version of the dynamic gap planner as a proof of concept.
In this book chapter, the dynamic gap planner is documented in greater detail to
further elucidate each intermediate step in the planning pipeline. The planner itself
is extended by relaxing two limiting assumptions: (1) the “isolated gap” assumption
in which gaps were previously not allowed to interact during gap propagation, and
(2) the “unsafe ungap” assumption in which the polar spaces between gaps caused by

4 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

obstacles were deemed entirely uninhabitable and unsafe to plan within. In summary,
the core contributions of the proposed work are as follows.

1. Proposing an alternative tracking paradigm which revolves around the tracking
and prediction of free space

2. Adapting geometric and kinematic rules from guidance laws to the realm of GBPs
to aid in dynamic gap propagation and feasibility analysis

3. Performing complex gap propagation analysis to enable planning through inter-
rupted and switched gaps

4. Providing a proof of collision-free dynamic gap passage under ideal conditions
along with supplementary safety modules for non-ideal conditions

5. Benchmarking against state-of-the-art local planners in the Arena-Rosnav simu-
lation environment

6. Validating planner performance onboard a TurtleBot2 platform in dynamic real-
world environments

A visual snapshot of active components during local planning for dynamic gap is
portrayed in Figure 1. This planner is open-sourced' in Arena-Rosnav [, 9, 10, 11]
and available to test. The information flow for the planner can be seen in Figure
4.3. In this chapter, the task of navigation in dynamic environments is defined (Sec-
tion 2) and common planning pipelines (2.1) and approaches (2.2) are surveyed
and discussed. Social navigation considerations that become important in dynamic
real-world settings are explained in Section 2.3. The paradigm of Planning in the
Perception Space (PiPS) that GBPs fall under is discussed in Section 3. Preliminary
concepts for GBPs in dynamic environments are defined (Section 4) before the pro-
posed local planner is detailed (Section 5). Then, experimental results in Section
6 validate theoretical claims of collision avoidance (6.1), illuminate planning per-
formance in more contrived setups (6.2), and contextualize dynamic gap planning
performance among state-of-the-art planners (6.3). Analysis of the computational
workload of the dynamic gap planner (6.4) demonstrates the efficiency of the PiPS
framework, social compliance results (6.5) provide insight into the behavior of dy-
namic gap around pedestrians in simulation, and, lastly, hardware experiments (6.6)
validate this proposed planning framework in the real world.

2 Navigation in Dynamic Environments

Mobile robot planning concerns the generation of a sequence of motion commands
for a mobile robot platform to maneuver from an arbitrary start position to an
arbitrary goal position. If this environment is entirely known and unchanging, then
this task is purely a motion planning problem. If the environment is previously
unknown, partially observable, and potentially even changing over time, then this
task becomes a navigation problem. For this navigation problem, the robot must

U https://github.com/ivaROS/DynamicGap

https://github.com/ivaROS/DynamicGap

Safe Gap-based Planning in Dynamic Settings 5

also possess some means to reveal the environment structure online through visual
sensing. This mobile robot may also be subject to geometric constraints due to its size
and shape, kinematics constraints due to its composition and linkages, or dynamics
constraints due to its actuation capabilities. In the context of this chapter, the robot
must reach its goal position (1) under a predefined time limit and (2) without colliding
into any static or dynamic artifacts in the environment in order for the task to be
deemed a success.

2.1 Planning Considerations

When navigating in a dynamic environment, a handful of additional considerations
must be made when compared to static environments: data clustering, data asso-
ciation, and data estimation. First, a navigation framework should have some way
to cluster or abstract raw sensor data into meaningful primitives that enable local
planners to efficiently avoid environment collisions. These primitives can take many
forms, including point clusters [12, 13], disks [14], polygonal geometries [15, 16],
or semantic labels [17]. Second, a navigation framework must find and associate
pairings of these primitives between consecutive time steps in order to retain a his-
tory or memory of primitives. Depending on the format of the primitive, registration
algorithms such as Iterative Closest Point (ICP) [18] or Iterative Quaternion Aver-
aging (IQA) [19] can provide pairwise assignments. Other approaches treat this step
as a Rectangular Assignment (RA) problem and solve via the Hungarian Algorithm
(HA) [20]. Lastly, a navigation framework must estimate the unobservable portion of
the state of the dynamic obstacles. This involves updating a set of prediction models
that could be variants of Kalman filters (KF) [12, 21, 22], Gaussian processes [23],
factor graphs [24], or neural networks [17].

Once all of these steps have been taken, prediction models can be factored into
planning decisions through capturing them in cost functions or constraints in Model
Predictive Control (MPC) formulations [25, 15], or embedding them in occupancy
maps that can be searched over for paths [26, 21]. The methods cited here assign
prediction models to individual obstacles and represent these prediction models with
respect to a fixed frame. Performing obstacle tracking in the egocentric frame allows
the local planner to leverage the benefits of operating in the perception space which
will be discussed in Section 3.

2.2 Planning Approaches

Within the mobile robotics research community, navigation is a well-studied problem
with a myriad of approaches. Many classical algorithms were originally designed
for static environments and later saw extensions to explicitly account for dynamic
environments. Graph search-based methods such as A* [27] can discretize the con-

6 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

tinuous configuration space of a robot and search over it for a collision-free path to
the goal. Later, the methods D* [28] and D* Lite [29] were designed to handle the dy-
namic environment case. Sampling-based methods such as Probabilistic Roadmaps
(PRM) [30], Rapidly-Exploring Random Trees (RRT) [31], and their asymptoti-
cally optimal extensions PRM* and RRT* [32] can be viewed as extensions of
graph-based methods that opt to randomly sample the continuous configuration
space instead of discretization. This family of planners has also seen extensions to
dynamic environments [33, 34]. Some planning algorithms such as the Dynamic
Window Approach (DWA) [35] choose to sample in the control space as opposed
to the configuration space and then roll out these sampled control inputs. Similarly,
dynamic versions of DWA have been developed [36]. More recently, trajectory op-
timization has proven to be a potent form of motion planning that can account for
kinodynamical constraints while providing optimal trajectories. Methods including
Timed Elastic Bands (TEB) [15] formulate local navigation tasks as optimal con-
trol problems which are also general enough to handle dynamic environments [16].
Some approaches such as velocity obstacles (VOs) [37, 38], reciprocal velocity ob-
stacles (RVOs) [39], and optimal reciprocal collision avoidance (ORCA) [40] were
initially designed with dynamic obstacles in mind. Methods from control theory have
also been leveraged for effective collision avoidance strategies including Hamilton-
Jacobi-Bellman reachability-based approaches [4 1, 42] and receding horizon-based
methods [43, 44, 45, 46]. Lower-level safety filters such as control barrier functions
[47, 48, 49] and backup controllers [50] can also modify control inputs to ensure
safety during online deployment.

As of late, data-driven approaches to local navigation and collision avoidance
have also received tremendous amounts of attention. Most of these learned plan-
ners are based on deep reinforcement learning [51, 52, 53, 54, 55, 56] due to the
availability of physics simulations and self-supervised trial-and-error-based data
collection methods. Such planners have seen significant use due to their apparent
generalizability and scalability. However, these methods have yet to see widespread
integration onto hardware platforms due to their lack of safety and interpretability.
Extensive comparisons of classical and learned methods are still difficult to find
[57, 58], and one of the motivations of this chapter is to provide a detailed bench-
marking comparison of several state-of-the-art planners, both learned and classical.
One of the particularly exciting facets of the proliferation of robotics research is the
rise in publically available competitions and challenges to stimulate progress. Both
the Benchmark Autonomous Robot Navigation challenge [59] and DynaBARN [60]
challenges have been excellent places to locate and evaluate state-of-the-art local
navigation planners.

2.3 Social Navigation

Under the context of navigation, planning in dynamic environments commonly
means planning in the presence of humans. Social navigation refers to a robot’s abil-

Safe Gap-based Planning in Dynamic Settings 7

ity to navigate in a manner that goes beyond geometric efficiency, such as minimizing
path length, to also account for social considerations, including human comfort, and
norms. A socially compliant robot must be capable of recognizing people and prior-
itizing their safety accordingly. Beyond collision avoidance, the planner’s behavior
should aim to minimize discomfort, reduce confusion, and maintain predictability in
its movements. Socially-aware navigation also involves the ability to convey intent,
either through movement patterns or explicit signals, so that nearby humans can
understand and anticipate the robot’s actions. In situations where human and robot
objectives may conflict, a socially compliant robot may even compromise its own
efficiency to resolve the situation in a way that aligns with human expectations [0 1].

Failure to navigate in a socially compliant manner can cause discomfort and
even increase the risk of collisions, especially in situations where human behavior
is unpredictable. Social considerations are particularly important as robots become
increasingly integrated into everyday social environments, supporting applications
such as food delivery, healthcare settings, and office spaces. However, human be-
havior varies widely across contexts, individuals may be distracted by their phones,
uncooperative towards robots, or hurried by their own tasks, introducing patterns that
the robot may not be familiar with. This variability makes it challenging to develop
navigation approaches that generalize effectively across real-world environments.

Numerous approaches have been proposed to address this. Classical geometric
methods with hand-engineered cost functions and heuristics dominate industrial
deployment due to their reliability and ease of software integration. Data-driven
approaches, on the other hand, are able to address many of the shortcomings of
classical based approaches, such as capturing nuanced human behaviors, predicting
trajectories and incorporating social norms; however, they lack the same safety
guarantees and explainability and have higher integration overhead [62].

In order to assess a planner’s performance in a social setting, various metrics such
as the velocity or time spent in personal space can be used, where personal space is
often defined as some radius around humans [63].

3 Planning in the Perception Space

Most motion planners [31, 15, 64] opt to plan using Cartesian world-frame envi-
ronment representations such as occupancy maps or voxel grids. These approaches
contrast the perception space approach to planning which involves keeping sensory
input in its raw egocentric form to take advantage of the computational benefits
that come with foregoing intensive data processing. Applying the PiPS framework
means that all local planning steps downstream must then be cast as egocentric
decision-making processes.

Prior work from the authors has developed a hierarchical perception space navi-
gation stack fit with efficient collision checking [65], egocentric environment repre-
sentations [66], and local path planning [67, 2].

8 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

GBPs [68, 69, 70, 71, 3, 72,73, 74,75, 76, 6,4, 5, 77] are a form of perception
space-based planners that detect regions of collision-free space defined by leading or
trailing edges of obstacles. This can be viewed as an alternative way of discretizing
the environment, here in the egocentric polar space as opposed to discretizing in the
Cartesian space for common methods such as occupancy maps [78, 79, 80]. Some
attention has been given to gaps in dynamic environments [5, 6], but these methods
do not develop their theory through a perception-informed approach, instead opting
to use ground truth agent pose information. In the proposed work, explicit attention
is paid towards how the dynamics of gaps must be ascertained from scan data in
order to understand how the local gaps evolve over time.

4 Preliminaries

First, the primitive environmental affordances that the proposed planner will exploit
for planning are defined and visualized.

4.1 Gap

Definition (Gap): A polar region of free space in R? characterized by the area
swept out between p;/. and p,.;. where the subscripts //e and r /e represent relative
measurements between the left and right gap points, respectively, and the ego-robot.
Gap points are also assigned velocities v;, and v, .. Together, these form the left

. . T T
and right gap point states X;/, = [pz/e Vl/e] and X,), = [pr/e vr/e] .

%
/’Vl/e

(a) Each gap G is characterized by left and (b) Each ungap U is built from the left gap point
right gap point states comprised of positions of a gap G;, denoted as p; Je? and the right gap
Pije and p,/. and velocities Vije and V;/e. point of the next gap Gy, denoted as p‘rﬁ

Fig. 2 Diagrams of (a) an example gap and (b) an example ungap.

Safe Gap-based Planning in Dynamic Settings 9

4.2 Ungap

Definition (Ungap): A polar region of obstacle space in R? characterized by the area
swept out by adjacent gap points p’r‘;; and p) e

Note that the two points that define an ungap come from two different adjacent gaps.
The set of ungaps considered during planning is restricted to the ungaps that are (a)
dynamic and (b) receding. The criteria used to determine these classifications are

further detailed in Section 5.1.3.

4.3 Gap Tube

Definition (Gap Tube): A sequence of gaps and gap lifespans that characterize how
a gap evolves from time ¢ = 0 to the end of the local planning horizon ¢ = T
In this chapter, a gap tube will be expressed as

T ={(Go,Tp), (G, T1),...,(GNy = 1,Tn = 1)}

where N is the number of unique gap models needed to characterize the gap tube
during the local planning horizon and Ty + 71 + - - - + Ty—1 = T. The process through
which these gap tubes are constructed during planning is detailed in Section 5.5.1.

5 Dynamic Gap Local Planning Module
5.1 Gap Generation

The step of gap generation is an egocentric form of data clustering and environment
abstraction that allows GBPs to condense a high-dimensional perceptual input such
as a laser scan into a small set of free space regions that can be passed through during
planning.

5.1.1 Gap Detection

Gap detection involves the parsing of this scan L to obtain a set of detected gaps
G;*" that describe the free space of the local environment at the current time ¢. Gaps
are classified as radial if they are formed from a significant, instantaneous change in
range across consecutive scan points or as swept if they comprise a large interval of
scan points with maximum detectable ranges.

10 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

p=1 -me-
t=k t=0 ----

Fig. 3 Diagram of an example gap tube. At ¢ = 0, the gap tube 7,1 begins with the gap G;4i.
However, at t = k, due to the two obstacles overlapping one another, the dynamics of the right point
of gap G, change. In order to reflect this change in the dynamics, the gap tube 7;.; visualized on
the right side of the figure captures this second gap with altered dynamics.

5.1.2 Gap Simplification

Once this set of gaps has been extracted from the laser scan, an additional pass
through G™V is performed to remove any redundant gaps and potentially merge
adjacent gaps, yielding a set of simplified gaps G*™P that represent the most s alient
portions of free space in the local environment.

5.1.3 Ungap Detection

A set of ungaps U*™P can also be extracted from G*™P to use during planning. To
do so, the set of simplified gap points

simp _ ¢,.0 0 N N
P = {pr/e’pl/e’ ""pr/e’pl/e}

is sorted in counterclockwise order by bearing. Then a series of checks are performed
on adjacent pairs of points to determine if the pair (p;, p;) forms an ungap. First, a
velocity check is made to determine if the pair of points are dynamic and moving in
roughly the same direction:

Safe Gap-based Planning in Dynamic Settings 11

LEVEL
Goal Global Map Global Planner High
A
Scan Thread U] Plan Thread
L TP PP B e = == b =y e
S , i Gap Detection '} 1 Gap Manipulation ! '
can ' 1 (Sec.5.1.1) ' i (Sec. 5.4) ! !
TN o]
: 1 ;aw : [igtmanip E
1] -
' Pl —————— . 11 i Gap Propagation 1! '
: i Gap Simplification '} i (Sec.551) 1 :
, 1 (Sec. 5.1.2) ' T —] b
' simp ('Jsi'nTp' ' _..-.-.-.*.-.-.-.._ !
R T CmNoiao v a[ggor! (Un)Gap Goal 1 '
v 7t-Li Gap Association N _’: Placement : '
4 Sec. 5.6 :
N O T OO vor s N S
1 } '] [
1 [| - .
. S S T | ! (Un)Gap ! .
Robot State : :: Ga?SSCStI?;;]O" il : Feasibility Analysis : ' Mid
' Lo i . 4 (Sec. 5.5) E i
' 1gesl e] '
: t : : g{eas (L{{E'dﬂ '
[]] |l.-.-.-. iy i S———
"""""""""" w Gap i ! Ungap
1, Trajectory | : Trajectory |:
:; Generation 1 Generation I
o (Sec.5.6) ' ¢ (Sec.5.6) ::
: '
' - - '
b i Trajectory Scoring ! '
' 1 (Sec. 5.7) ! B
' B e M
: local '
' - It-l-l-l- '
: ‘f,cfrlr I Trajectory I :
+ —»! Comparison ! H
' ! (Sec. 5.8) i '
' [P —] N
: ‘ curr ¥
Leccmcmcscse ..
Control Thread
: curr '
R L ;
' i Trajectory Tracking ! vies] Projection Operator !med .
: 'g (Sec. 5.9) L (Sec. 5.10) 2 ! Low
] N 1 B 1 .
Lecccececcsceccccscescsceescscscsns=.

Fig. 4 Workflow for navigation framework. Within this framework, there are three active threads:
scan, plan, and control. The scan thread (red) is run at the rate of the incoming laser scan, which

is 25 Hz in simulation and on hardware. This thread acts on an incoming laser scan £ and outputs

a set of estimated gaps G and ungaps UF™. The plan thread (blue) then synthesizes a set of

candidate local trajectories Z; through these estimated gaps and ungaps. Finally, the control thread

acts to track the selected local trajectory &™. Both the plan and control thread are bound to run

together at the prescribed planning rate which is 5 Hz in simulation and on hardware.

12 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

(a) Example set of raw and simplified gaps ob- (b) Example set of raw gaps associated across
tained from the gap detection policy in Sections timesteps as detailed in Section 5.2. As agent A
5.1.1 and 5.1.2. Blue points are the current laser passes in front of agent B at time ¢, the gaps
scan, red arcs and points are the set of imme- attached to agent B are no longer visible and
diately detected raw gaps, and purple arcs and subsequently lost during gap association.
points are the simplified gaps.

Fig. 5 Visualizations of (a) gap detection and simplification and (b) gap association.

[Ivill2 = vinin A IVll2 = Vinin (H

and
(vi,v;) >0, 2

where vy is @ minimum speed threshold to consider an obstacle as dynamic. If the
two points meet the criteria of Equations 1 and 2, then the points are attached to an
ungap. Furthermore, if this ungap is determined to be receding, meaning that

<pisvi> >0/\<pj’vj> >0, 3)

then this ungap is passed on to planning.

5.2 Gap Association

The set of simplified gaps G¥™P captures the immediate free space, but in dynamic
settings it is crucial to understand how this free space will evolve across the local
planning horizon. Therefore, additional steps are taken to track gap points over time.

Association is performed on Pgimp and represented as a RA problem where the
simp

cost is equivalent to the distance between points across consecutive steps, P,_;

Safe Gap-based Planning in Dynamic Settings 13

and P;"™. This assignment problem is then solved with the HA [20], producing a
minimum distance mapping between P;"} and P;"™. If the distance between two
associated points exceeds a threshold 7,50 € R*, then that point-to-point association
is discarded and a new prediction model is instantiated for the respective point at

time .

5.3 Gap Estimation

The point-to-point associations provide an insight into how the set of gap points
changes over time. This evolution is characterized by a second-order dynamics
model with respect to the rotating ego-robot frame.

Given the desire to perform gap estimation in the perception space, the prediction
models must represent the gap points with respect to the local robot frame which
is constantly changing. Therefore, the constant velocity dynamics model taken with
respect to an inertial frame is augmented to allow for translations and rotations of
the robot. The state vector is defined as

X, = [ps/e] _ [Bv — Pe

Vs/e s — Ve

; “4)

where py/. € R? and v, Je € R? represent the position and velocity of the gap side s
(left or right) relative to the ego-robot e, respectively. The system dynamics are then
X. = [ps/e] _ [Vs/e — We X Ps/e (5)

* ‘.’s/e Ag/e — We X Vg/e ’

where w, represents the angular velocity of the ego-robot and a/. represents the
linear acceleration of the gap side relative to the ego-robot. Gap points are assumed
to travel at a constant velocity, which then simplifies Equation 5 to

Xx — [ps/e
Vs/e

Vsje — We X Ps/e (6)
—A, — We X Vgje |

This model is estimated with an extended KF given the nonlinear cross-product
in Equation 6.

5.4 Gap Manipulation

Before the current set of gaps is passed on to trajectory generation, two pre-processing
steps are taken in order to improve gap visibility and safety.

14 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

5.4.1 Radial Gap Conversion

After the gap simplification policy defined in Section 5.1.2, it is still possible to
have radial gaps in the current set of gaps. Radial gaps can cause safety risks due
to their low visibility beyond the gap arc. A real-world example can be a hallway
corner where it is difficult to determine if there is an upcoming obstacle beyond the
corner. To mitigate this source of danger, remaining radial gaps are converted into
swept gaps by pivoting the gap representation about the closer of the two gap points.
Only gap points that are not attached to ungaps are converted so as to not neglect the
dynamics of the environment, and the prediction models of all gap points that are
altered through this radial gap conversion step are modified to reflect the new gap
state.

5.4.2 Gap Point Inflation

Any real world robot that this planner is to be deployed on will have some finite
size. Therefore, gap representations must be inflated inwards to compensate for the
inscribed radius of the ego-robot. A diagram for how this inflation is performed is
shown in Figure 6. A user-defined inflation ratio 7j,5 € [1, c0) can be adjusted to
modulate how conservative this step should be when inflating the gaps inward. First,
the inflated inscribed robot radius is calculated as

Yinfl = Tinfl * Finscr- (N

Then, the angle « that is formed between the line from p, to the gap side point py
and the line originating from p, that is tangent to a circle of radius rj,q with its center
at py is calculated as

Tinfl
lIps||
The remaining angle g in the triangle formed by p., ps, and the inflated gap side
point pi™ can be calculated as

S

). ®)

ag = arcsin (

T

Bs = 5 - Qs.)

Finally, the distance hinn from the original gap side point py and the inflated gap side
point p" can be calculated as

[— L 10

TN (o

This manipulation step generates a set of manipulated gaps G™P which can be
evaluated for feasibility.

Safe Gap-based Planning in Dynamic Settings 15

Fig. 6 Diagram rep-
resenting an example
inflated gap. Here,
the ego-robot point
Pe, the left gap point
Pije, and right gap
point p,. are dis-
played along with
/ their inflated counter-
part p}'}i pir“fe. The
inflation policy is
identical for the both
gap sides, with solely
the rotation direction
for the inflation point
being the difference.

amm————
~

~
LTS Y

5.5 Gap Feasibility Analysis

In static settings, gap feasibility analysis is zeroth-order calculation. Determining
whether or not a gap can be planned through is purely a geometric consideration:
can the ego-robot fit within the gap? However, the transition to dynamic environments
makes gap feasibility analysis a higher-order calculation.

In static settings, the currently available free space will remain as free space (and
the same applies for obstacle space) for all time. In dynamic settings, free space can
turn into obstacle space, and vice-versa. A gap currently exists, but might not in the
future. A gap may not exist now, but will be created in the future. To account for these
scenarios, the presently existent gaps are propagated forward in time to understand
how they evolve, potentially changing shape or dynamics. By pruning away infeasible
gaps, this step conserves the energy of the robot and avoids potentially dangerous
gaps through which it would be difficult, if not impossible, for the robot to pass.

5.5.1 Gap Propagation

To understand the behavior of gaps over the local planning horizon, gap models
(Eq. 6) are integrated forward under the constant velocity assumption. In order to
remove the ego-robot motion from the gap state and solely analyze the motion of
the gap itself, the gap-only dynamics are recovered from the prediction models by
adding the ego-robot’s velocity v, to the relative velocity estimate v/, to obtain the
gap-only velocity vs. This gap-only velocity is then used during propagation. The
general workflow is detailed below and given in Algorithms 1 and 2.

Gap Point Propagation: First, the set of points from the manipulated gaps P™a"P
is collected and propagated forward (Algorithm 1, Line 8). The propagated points

16 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

are sorted in counterclockwise order by bearing (Line 9), and these sorted points
are passed on to Algorithm 2 to extract a new set of gaps at that future timestep.
The extracted gaps from consecutive timesteps k — 1 and k are associated (Line 11)
through a Rectangular Assignment problem that is slightly modified from the one in
Section 5.2 in order to assign the propagated gaps from #;_; to the gaps at t;. Lastly,
these newly associated gaps are merged into a temporal gap tube that captures how
a gap at time ¢ = 0 evolves in the local environment to time # = 7' (Line 12). This set
of gap tubes 7P™P is evaluated for feasibility as detailed in Section 5.5.2.

Algorithm 1 Gap Point Propagation

: Given: Manipulated gap points P™"P

: Return: Set of propagated gap tubes 7P"P

. /* Initialization */

T — ()

glli’fi)f — gmamp

: /* Propagation */

: for each timestep #; in planning horizon 7' do

Propagate P™P to time #

Sort P™"P in counterclockwise order by bearing

Extract propagated gaps g}jmp from sorted P™a"P > Algorithm 2

Associate propagated gaps Q}imp with ngrfll’
Merge associated propagated gaps Q}zmp into 7P
gprop — prop

k-1 k
: end for

PRQUE WY

_—
E e B

Propagated Gap Extraction: Algorithm 2 shows how a set of gaps at future
time t are extracted from a set of propagated gap points. This algorithm iterates
through the ordered gap points (Lines 9 — 20) in search of consecutive points for
which p:.namp represents a right gap point and p?amp represents a left gap point. One

example of this would be the pair of points pg and p(l) in Figure 7a. If the opposite

occurs, and p; " represents a left gap point while ;""" represents a right gap

point, this represents a gap that exists in the environment but is currently unavailable
due to obstacles passing across one another. An example of an unavailable gap is
the pair of points p/(;_2 and p’f‘z in Figure 7a. This unavailable gap is formed when
agents 1 and 2 that initially form gap A pass across each other at the timestep 7x_5. A
new gap will appear at a future timestep, so it is important to store this information
for gap propagation. Ungap IDs are leveraged in this step to ensure that neighboring
gap points that form an ungap are not mistaken for an unavailable gap.

Once a set of propagated gaps g}j“’f’ has been extracted for future time #4, a gap
association step is performed between G}) and G; . This step is identical to the
Rectangular Assignment problem discussed in Section 5.2, the only difference here
being that entire gaps are associated instead of individual gap points. Since gaps are
associated, the distance metric used is the sum of squared differences between the
points of the two gaps G; and G ;:

Safe Gap-based Planning in Dynamic Settings 17

Algorithm 2 Propagated Gaps Extraction

1: Given: Manipulated gap points P™"iP

2: Return: Set of propagated gaps Q}Zmp

3: /* Initialization */

4: N = | Pmamp |

50 60" = {}

6: ip = index of first right gap point

710

8: /* Extraction */

9: fori =0to N do

10: p; P = PManiP (o + i)
11: if p;™"" is not assigned to a gap then
12: l; « gap side for p;mmp
13: u; < ungap ID for p;namp
14: for Ai = 1to N do
15: J=(@+Ai)%N
16: Py = P (i +)
17: if p}mnip is not assigned to a gap then

18: 1 « gap side for pj."anip

19: uj < ungap ID for pj.nanip
20: if [; # I; and u; # u; then
21: if /; is right then 4 > Right to left: available gap
22: Add an available gap between p; """ and pj.“""p to G°P
23: else > Left to right: unavailable gap
24: Add an unavailable gap between p;"" and p;fm"p to Gp*
25: end if
26: end if
27: end if
28: end for
29: end if
30: end for

2 2
dij = IPLi = Prjlls + llpri — Prjll3- (11)

From this association step, there can be several outcomes. If the associated gaps
G; and G| share the same left and right points, then this gap was not interrupted
by any other gaps during propagation and it can be left alone. However, if two
associated gaps have different points, this indicates some form of a gap interruption.
This interruption might be caused by a gap closing and eventually re-opening (as
shown in Figure 7a), or by one gap being propagated into the space of a different gap
(as shown in Figure 7b). In either of these scenarios, the gap dynamics change, and
a new gap must be instantiated within this particular gap tube.

18 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

=k

t:T\t/

.
o?ﬂ./zt:k—Q
L
o 0% S

0 *,

@'

(a) Gap propagation for two crossing agents. The
bold colored arcs labeled A and B are the two
gaps detected at time ¢ = 0. The lines of black
points are the gap points propagated outwards
from ¢t = 0 to ¢+ = T. The transparent colored
arcs represent the gaps formed at future time
steps. Available gaps are represented by solid arcs
and unavailable gaps are represented by dashed
arcs. At time ¢t = k — 2, the cyan arc is pre-
dicted to close, signaling that this gap is no longer
available. At time ¢ = k, the cyan gap points
change dynamics, but the gap remains unavail-
able, marked by a second dashed arc. At ¢ = k,
the magenta arc changes gap dynamics but re-
mains available.

(b) Gap propagation for two translating agents
(labeled 1 and 2) and a third interrupting agent
(labeled 3). The bold colored arcs labeled A -C
are the three gaps detected at time # = 0. At time
t = k — 1, the magenta arc is predicted to close,
signaling that this gap is no longer available.
At time ¢t = k, the cyan gap is interrupted by
agent 3, marked by a transparent cyan arc, but the
gap remains available at this time. The magenta
arc changes gap dynamics but continues to be
unavailable as well Lastly, the blue gap changes
dynamics but continues to be available.

Fig. 7 Visualizations of gap propagation algorithm.

5.5.2 Pursuit Guidance Analysis

In this section, the guidance law-based trajectory generation scheme that dynamic
gap employs in order to determine if a gap tube is kinematically feasible will be
outlined. Guidance laws [81] comprise a set of kinematic equations and feedback
control laws that define collision course behavior between a pursuer and a target.
While commonly affiliated with older forms of missile guidance, these laws have
also seen use in many robotics applications [82, 83, 38].

Among the more established guidance laws, the two geometrical rules of Pure
Pursuit (PP) and Parallel Navigation (PN) are the most popular. The PP rule, some-
times referred to as pursuit guidance, has the pursuer direct their velocity vector
towards the target at all times, always keeping the target within the pursuer’s line of
sight. PP has seen a great deal of attention due to its simplicity [84, 85, 86], but this

Safe Gap-based Planning in Dynamic Settings 19

guidance law only leads to a collision if the pursuer is capable of traveling at a speed
faster than that of the target.

The PN, or constant bearing, rule [87, 88] has the pursuer direct their velocity
vector such that the direction of the line of sight between the pursuer and target
remains constant while the distance between them decreases. This geometrical rule
is capable of yielding collision course conditions even if the pursuer is traveling
slower than the target. Furthermore, for a non-maneuvering target, meaning a target
that is not changing its speed nor its heading direction, PN is the optimal guidance
law which yields a minimum intercept time. For a single gap tube, each gap in the
gap tube is evaluated independently for feasibility. A gap tube is feasible if all gaps
within the tube are feasible.

Fig. 8 Diagram for guidance law notation for a
single gap. The bearing B, denotes the bearing
at which the gap goal is at for # = 0. The angles
Vg = Og + B¢ and y. = 6, + B, represent the
directions in which the gap goal position and the
robot position move for interception.

This feasibility analysis employs the PN geometric rule [81] which assumes a
constant gap goal speed v, as well as a constant ego-robot speed v.. This policy then
defines the bearing y, = 6. + B, towards which v, will be applied. With relation to
Figure 8, the PN policy is defined as B, = 0,74 < 0, where

ﬂ' Vg sin(fg) —Vve sin(6,)
[_g] | T w . (12)
s Vg cos(fg) — Ve cos(6e)
and rg := [[pg/|. In order for ,Bg = 0 to hold,

Vg sin(f,) = v, sin(6,). (13)
In order for 7, < 0, it must be that

Ve c0s(fe) < vgcos(fg). (14)

Therefore, for a constant speed ratio K := v, /vy, it follows that the gap goal position

can be attained if)
sin(f,)

K bl

sin(6,) = (15)

20 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

and 0
cos(6,) > COSI({ g). (16)

If these conditions can be met, then the ego-robot will intercept the goal position at
the time

) oy 1 (17)
intercept = ve K -cos(f.) —cos(fg)’

where rg is equal to rg at t = 0. If these conditions can not be satisfied, then the

given gap tube is deemed infeasible and discarded. If the conditions can be satisfied,
but 75 < finercept, Meaning that the gap will cease to exist before the ego-robot can
intercept the goal position, then the gap tube is also deemed infeasible and discarded.
Gap tubes that satisfy this condition are added to 775,

5.5.3 Proof of Collision-Free Passage

Theorem 1: Given

1. A first-order holonomic ego-robot,

2. A feasible manipulated gap with constant velocity left and right points p;, p;,

3. An isolated local environment meaning that no other gaps will enter the gap in
focus during the local time horizon,

then performing the PN policy towards the gap goal point p, will yield collision-free
gap passage.

Proof: Let the gap goal point p, and velocity v, be defined as a convex combination
of the left and right gap point states,

Pg = «pr + (1 = K)p,

18
Ve=kvi+ (1 -k)v,, «e€][0,1]. (18)

If the gap in focus possesses an angular span of greater than r radians, meaning that
the gap is nonconvex and a convex combination may lie outside of the gap, the gap
span can be artificially reduced to two points within the original gap span that form
a convex polar triangle. It follows that

B = arctan(p,) = arctan(«p; + (1 — k)p,). (19)

Without loss of generality (by rotating the egocentric frame to align with the center
of the initial gap), B, € [B,,B:] given that arctan is a monotonically increasing
function. Following the same argument for

vg = arctan(vg) = arctan(kv; + (1 — k)v,), (20)

it can be seen that y, € [y,,y;]. Given that

Safe Gap-based Planning in Dynamic Settings 21
y=8+6, (21)
it follows that 6, € [6,, 6;]. From Equation 15,

sin @,) 22)

0. = arcsin (

and given that arcsin is also a monotonically increasing function, this means that
Oc € [6¢)r,0c1] Where 0,,60,;, 6, are the bearings at which the ego-robot must
direct its velocity at to intercept the gap goal, the left gap point, and the right gap point,
respectively. This indicates that under the PN policy, the ego-robot will intercept the
gap goal point between the left and right gap points, therefore performing collision-
free gap passage. O

While it is clear that in practice, few gaps will satisfy these constant velocity
and isolated environment assumptions, the trajectory generation scheme for the pro-
posed planner is still built upon a collision-free guarantee. Supplementary modules
including gap propagation, scan propagation, and safety filters are all employed to
mitigate risk in situations where assumptions are violated.

5.6 Gap Trajectory Generation

Gap Goal Placement: For a given gap G; within a gap tube 7}, the gap goal state
X, is a convex combination of the left and right gap point states. The position of a
local waypoint p from the global trajectory £21°°2! can be used to bias this gap goal
towards one side. For ungaps, the gap goal is inflated inwards to ensure that it can
be reached without colliding with the obstacle creating the ungap.

Gap Trajectory Rollout: Gap tube trajectories are obtained by integrating the ego-
robot position forward along the intercepting heading 7y, resulting from the pursuit
guidance analysis in Section 5.5.2. Ungap trajectories are synthesized in the same
manner.

5.7 Gap Trajectory Scoring

5.7.1 Pose-wise Scoring

In order to determine which trajectory to track, each trajectory is evaluated by an
egocentric pose-wise cost based on proximity to local obstacles and a terminal
pose cost based on proximity to a local waypoint along the global plan in order to
encourage progress toward the global goal.

The cumulative cost for a trajectory £ is

22 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela
1 N

J (&) =wlp[N]-pll + NZC(d(p[k];L[k])) (23)
k=1

where d(p; £) is the distance from the pose p to the laser scan £, w € R* is a
weighting factor, p* is a local waypoint along the global path, and

00, d < rin
C(d) = Cobse_WZ(d_rinﬁ); Tinfl < d < Fmax » (24)
0, Fmax < d

where cqbs, Wwo € RT are weighting factors, ring is the inflated radius of the ego-robot,
and rpax is the maximum distance that is penalized. Pose-wise scores are averaged
S0 as to not bias selection towards shorter trajectories.

5.7.2 Dynamic Scan Propagation

The trajectory cost formulation is adapted from [2], with one key difference: pose-
wise scoring requires a laser scan for each timestep ¢ along the trajectory. However,
these future laser scans are not directly accessible. In practice, when gaps are prop-
agated forward in time, a set of propagated laser scans are recovered and stored for
later scoring by estimating the laser scan dynamics £. The algorithm used to back
out these propagated scans from a set of predicted gaps is given in Algorithm 3. An
example set of propagated scans obtained during planning is visualized in Figure 9.

In short, a dynamics model for the laser scan £ is approximated by assigning gap
point dynamics models to each scan point if the neighboring gap point models are
sufficiently similar. In this algorithm, the condition areSimilar that determines if two
gap point states (pLus, vius) and (prys, VrRus) are similar is evaluated as

IVLEs|l2 = Vimin A lIVRES |2 = Vimin A VLES - VRES > 0. (25)

Given that propagated scan points can change both their bearing and range, care
must be taken to ensure that propagated points are mapped to the correct scan point
index.

The highest scoring candidate trajectory is compared against the currently exe-
cuting trajectory to determine if a trajectory change should occur.

5.8 Gap Trajectory Comparison

The core idea behind safe hierarchical planners involves chaining together multiple
safe local trajectories en route to the global goal. Therefore, a method of triggering
a switch to a newly synthesized local trajectory must be defined. In this work, an

Safe Gap-based Planning in Dynamic Settings 23

Algorithm 3 Dynamic Scan Propagation

: Given: Current set of raw gap points P™"
: Given: Current laser scan £
: Return: Set of propagated laser scans { Lo, L1, ..., L1}
: /* Assignment ¥/
L={}
: for (Bi,ri) € Lo do
forp; € P™ do
B = arctan (p;)
if B i < B; then
PrHS < Pj
else
PLHS < Pj
break
end if
end for
if areSimilar(pys, prus) then > Equation 25
Bi < (BLus + Brus) /2
Fi « (FLus + Frus) /2
else
pi=0
f‘i =0
end if
: end for
: /* Propagation */
: for each timestep # in planning horizon 7" do
Li=Lo+ L 1t
: end for

[N N I N T O T N S i A R N R e i e Wl
e N e e e ol i T =N

Fig. 9 Visualization of dynamic scan propaga-
tion. The colored points are the gap points along
with their estimated velocities. Similar gap points
are used to propagate scan points from ¢ = 0 to
t = T, represented by the increasingly transparent
scan points.

24 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

event-based trajectory switching scheme is employed in which a trajectory switch
only occurs if one of a set of conditions is met, as described below.

If the trajectory that is currently being tracked has either been completed (evalu-
ated by proximity to the trajectory end or by the trajectory timing) or determined to
be on a collision course, then a switch is triggered to the newly synthesized incoming
trajectory. Similarly, if the gap that the currently tracked trajectory passes through
has been determined to be infeasible as per Section 5.5, a switch is triggered.

5.9 Gap Trajectory Tracking

Once a local trajectory is chosen for tracking, a simple state feedback control law is
deployed to track the trajectory.

5.10 Projection Operator

As a last resort safety filter to handle non-ideal circumstances including discrete
time implementation and second-order dynamics, the proposed work also adapts the
projection operator module which is detailed in [2].

6 Experimental Results

This planner is implemented as a C++ Robot Operating System (ROS) node through
the move_base package [89]. All simulation tests are run one at a time in the
Arena-RosNav simulation environment on a Dell Precision 3660 Tower with an Intel
19-12900K CPU with 16 cores (single-thread passmark of 4, 336; multi-thread score
of 41,322). All hardware tests are run on a Dell XPS 13 laptop with an Intel i5-
10210U CPU with 4 cores (single-thread passmark of 2, 145; multi-thread score of
6, 152).

6.1 Experiment One: Assumption-satisfying Experiments

First, example trajectories are generated through single gaps to demonstrate how
under ideal conditions, pursuit guidance-based policies can generate provably safe
trajectories. A single gap is randomly generated and the PN policy is employed

for trajectory generation. With the gap centered at the origin, left gap points are

uniformly sampled from g; € [7, 37"], r; € [0.25,1.0] m. Right gap points are

uniformly sampled from 3, € [5*, 7], r, € [0.25, 1.0] m. Gap point velocities are

Safe Gap-based Planning in Dynamic Settings 25

uniformly sampled from all directions with magnitudes within the range [0.0, 1.0]
m/s. A finite robot radius of 0.20 m is also accounted for by the inflation policy in
Section 5.4.2. A subset of gaps are shown in Figure 10.

(b) ©) d

Fig. 10 Visualization of four Monte Carlo variations of gaps from Experiment One. Orange points
and lines represent the left side of the gap while red points and lines represent the right side.
Solid points and lines represent the original gap geometry whereas hollow points and dashed
lines correspond to the inflated version of the gap. Transparent points represent positions at prior
timesteps. The blue circle represents the robot along with its finite radius.

For this experiment, 10, 000 trials were run: 6, 987 trials end in collision-free gap
passage, 2, 668 trials resulted in a kinematically infeasible gap due to the velocity
limits of the robot, and for the remaining 345 trials, the robot was unable to pass
through the gap before it closed. No collisions occurred during any trials.

6.2 Experiment Two: Canonical Scenarios

In this section, a collection of isolated canonical scenarios are demonstrated to
provide further insights into how dynamic gap plans and predicts in dynamic settings.

6.2.1 Closing and Re-opening

In this scenario (Figure 11), the ability of dynamic gap to predict gaps to close and
subsequently re-open is highlighted. In this scenario, the robot must move from the
left side of the corridor to the right side beyond the two agents. The frame notations
i = n in Figure 11 refer to the planning loop iteration at which the frame was
captured. At i = 21, the planner can propagate the central gap forward in time to
determine that it will close and re-open during the planning horizon. Therefore, a
piecewise trajectory is generated that leads the ego-robot up to the crossing gap,
holds the ego-robot in place while the gap reopens (i = 40), and then leads the
ego-robot through the newly opened gap (i = 49).

The original version of dynamic gap only propagated gaps forward up until the
point at which their dynamics are altered, in this scenario being when the central
gap closes. This means that the original dynamic gap planner has no way to predict
that the central gap will reopen in the future for safe gap passage.

26 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

Fig. 11 Canonical Scenario One - closing and re-opening gap. The green circle with the attached
frame is the ego-robot, and the gray squares are the agents. The dotted blue arc shows the current
scan data, green arcs show the current manipulated gaps, orange arrows represent the position and
velocity of the local gap goals, light blue pointed lines are the generated trajectories, and the red
pointed line is the trajectory that is currently being executed by the robot.

6.2.2 Corridor - receding

In this scenario (Figure 12a), the ability of dynamic gap to plan through a presently
occupied region of space, referred to as the “ungap”, is highlighted. In this scenario,
the robot must move from the left side of the corridor to the right side, where the goal
is represented by the blue arrow. In this setup, the corridor is deliberately designed
to be too narrow for the ego-robot to move around the agent to pass it and continue
on. There are two gaps detected on either side of the agent, but the trajectories are
short and would cause collisions with the walls. Starting at frame i = 14, the planner
can be seen to select the central ungap trajectory that allows the ego-robot to trail
behind the agent. This ungap trajectory is consistently generated and tracked in all
subsequent frames up until i = 246 when the robot reaches the goal.

The original dynamic planner could not generate trajectories through ungaps.
Therefore, the planner would have to wait for the agent to clear out of the nearby
space before it could plan a trajectory through the corridor.

6.2.3 Corridor - approaching

In this scenario (Figure 12b), the ability of dynamic gap to plan around an oncoming
obstacle in a tight corridor is demonstrated. Similar to the last scenario, the planner
must get the robot from the left side of the corridor to the right side, where the goal
is represented by the blue arrow. In this setup, the corridor is wider compared to
prior scenario, thereby allowing for the ego-robot to move around the agent to pass
it and continue on. At iteration i = 66, the oncoming obstacle has been detected in
the laser scan, but the gap point models have yet to converge to an accurate velocity
estimate. By iteration i = 72, the approaching agent is both detected and predicted

Safe Gap-based Planning in Dynamic Settings 27

1 i =0l 1
\
[IY - :
i = 66
-
. ‘i/
=12
y
=82
T =118 \
~ e :t .
I e - Q . . Y J
i =93
=158 1. \
I m’se...\Q’ . /;"‘
=109
=246 \
I s -« {:)) o —\
' 1 1 i
(a) Canonical Scenario Two - receding corridor. (b) Canonical Scenario Three - ap-

proaching corridor.

Fig. 12 Canonical Scenarios Two and Three - corridor.

to be traveling towards the ego-robot. The planner successfully predicts this agent
forward, generating two trajectories that pass the agent on the left and right sides.

6.2.4 Four-way intersection

This scenario (Figure 13) highlights the ability of the dynamic gap planner to plan
through a complex four-way intersection scenario. In this scenario, the planner must
move the robot from the left branch of the intersection to the right branch, where the
goal is represented by the blue arrow. In this setup, two agents pass through the top
and bottom branches of the intersection.

By iteration i = 35, the agents are detected and the planner initially opts to pass
between the two agents. However, at planning iteration i = 60 the two agents are
attempting to de-conflict their own motion plans and staying in the center of the
intersection, making it difficult for the planner to pass through them. Due to this,
the planner moves the ego-robot away from the intersection at iteration i = 80. By
iteration i = 129, the gap between the agents has re-opened and the planner generates
a trajectory through it to continue through the intersection.

28 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

i=10 i =35 1 = 60)

i =80 i=129 i = 150

| I IS

Fig. 13 Canonical Scenario Four - intersection.

6.3 Experiment Three: Simulation Benchmarking

To gain a better understanding of the performance level of the dynamic gap planner,
a comprehensive series of simulation benchmarks are run with other state-of-the-art
local perception-informed planners. The dynamic gap planner is integrated into the
Arena-Rosnav [8] benchmarking environment and compared against four classical
cost map-based planners and four learned planners. Additionally, two other GBPs
are tested against including the static world predecessor of dynamic gap, known
as potential gap, and the prior version of dynamic gap. The version of dynamic
gap proposed in this chapter is benchmarked under both a holonomic robot model
as well as a nonholonomic robot model. These baselines provide insights into the
performance improvements obtained from the work presented in this chapter. All
baselines are detailed in Section 6.3.1.

Three environments are used, shown in Figure 14, referred to as empty, fac-
tory, and hospital. With these environments, the authors aim to build a gradient
of increasing environment structure to evaluate each planner’s ability to not only
navigate dynamic obstacles, in simulation represented as pedestrians, but also the
static, non-trivial structure of these worlds such as corridors, rooms, and atria.

Within each environment, 15 dynamic agents are placed at predefined start
points. Then, a path is generated from each agent’s start to its goal which the
agent subsequently tracks. Both the agents and the ego-robot have velocity limits
of v = v?a" = wI™ = 1.0 m/s. For each planner / environment combination,
25 tests are run, consisting of every combination of the five start and goal positions
portrayed in Figure 14. These 25 trials are also run with no agents present to give
insight into how the planners perform in a purely static version of each environment.
For all trials, planners are given three minutes to reach the goal.

For navigation-level performance, two dependent variables are captured: whether
or not the planner reached the goal under the prescribed time limit for the given

Safe Gap-based Planning in Dynamic Settings 29

Empty Factory
0 T °
° : T e
° . T
o .
°) C

Fig. 14 Three simulation environments used during benchmarking. Sizes are Empty - 31 X 24 m,
Factory - 38 x 19 m, Hospital - 34 x 24 m. Green dots represent the different start positions and red
dots represent different goal positions for simulation benchmarking. Each combination is evaluated
one time, yielding 5 x 5 = 25 trials for each environment.

trial, and whether or not the planner registered any collisions during the trial. Trials
in which the planner reached the goal under the time limit without sustaining any
collisions are considered a success. Trials in which the planner does not reach the
goal before the time limit, but also does not sustain any collisions are depicted as
timed out. Trials for which the planner reaches the goal under the time limit but
sustains collisions are treated as failed. Trials that both did not reach the goal before
the time limit and also sustained collisions are depicted as failed and timed out.
Results are reported by environment in Sections 6.3.2, 6.3.3, and 6.3.4.

6.3.1 State-of-the-art Baselines

In this chapter, four classical cost map-based planners are evaluated:

Timed Elastic Bands (TEB) [15]: TEB is a local planner which formulates a
soft constraint optimal control problem with respect to trajectory execution time,
obstacle separation, and compliance with kinodynamic constraints. The planner
performs blob detection on a local costmap to detect obstacles and runs KFs to
estimate the dynamic obstacle states.

Co-operative Human-Aware Navigation (CoHAN) [90]: CoHAN is a tunable
human-aware navigation planner designed to handle diverse human-robot interac-
tion contexts through context-based planning modes and a social compliance cost
function. From a planning perspective, COHAN is a socially aware version of TEB.

Model Predictive Control (MPC) [91]: The authors from TEB also developed
a receding horizon-based optimal controller that solves an optimal control problem
much like the one formulated in the original TEB work.

Dynamic Window Approach (DWA) [35]: DWA randomly samples the robot’s
control space (v, vy, w) and rolls out the resultant trajectory for a short period of
time. Each candidate trajectory is evaluated on proximity to obstacles, the global
goal, and the global path as well as speed. Colliding trajectories are discarded, but
the implementation that is benchmarked against has no dynamic obstacle prediction.

In addition, four data-driven planners are evaluated:

30 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

Deep Reinforcement Learning - Velocity Obstacles (DRL-VO) [55]: DRL-VO
is a deep reinforcement learning approach with a reward function based on VOs that
penalizes headings that are likely to lead to collisions using relative motion rather
than distance. Inputs include pedestrian states, a sliding window of laser scans, and a
local waypoint. Their policy is trained with the PPO (Proximal Policy Optimization)
algorithm in the Gazebo simulation.

Reinforcement Learning for Collision Avoidance (RLCA) [52]: The RLCA
method is a reinforcement learning model that directly maps the raw sensor data, in
this case a laser scan, to a desired, collision-free steering command. For this specific
network, a sliding window of the three past scans are passed into the model along
with a local waypoint from the global path and the robot’s current velocity. The
reward function for this model is comprised of three terms. First, a reward term for
making progress towards the local waypoint. Second, a flat penalty for collisions.
Lastly, a regularization term to discourage large angular velocities. This formulation
is solved using PPO in the Stage simulator [92].

Collision Avoidance with Deep Reinforcement Learning (CADRL) [93]: For
CADRL, ground truth state information for nearby agents, —including position,
velocity, and radius — is passed into model through a Long Short-Term Memory
(LSTM) network, and the ego-robot state information — including a local waypoint
from the global path, the preferred velocity, and the orientation — is then appended
to the input. The reward function administers a positive value if the local waypoint
is reached, a linearly decreasing negative value if an agent is close to the robot, and a
flat negative value if an agent is in collision with the robot. This model is trained with
Asynchronous Advantage Actor-Critic (A3C) algorithm using a custom simulation
engine.

Learning from Learned Hallucination (LfLH) [56]: LfLH is a self-supervised
framework that leverages automated hallucination to generate synthetic obstacle
configurations during training rather than relying on trial-and-error exploration. An
encoder-decoder structure is used for hallucination in which the robot state, goal state,
and robot plan are passed to the encoder during training. The encoder then learns to
predict probability distributions of nearby obstacles. The decoder samples from these
obstacle distributions and generates a motion plan. Then, a motion planner is learned
through behavior cloning by sampling the learned encoder to generate hallucinated
obstacle perceptions and comparing the output action against the actions of an
optimization-based motion planner that is treated as an expert under this framework.

Lastly, a family of GBPs are evaluated:

Potential Gap (PGap) [2]: Potential Gap is a gap-based planner designed for
static environments. This planner detects the current set of gaps in the local environ-
ment, manipulates the set of gaps to ensure gaps are convex polar triangles, and then
deploys an attractive potential and circulation field to drive the robot through gaps.

Dynamic Gap (DGap) [7]: This baseline is the prior version of the planner
discussed in this chapter. This baseline propagates gaps only up until the point in
which they close or propagate into another gap. This baseline also has no means to
generate trajectories through ungaps.

Safe Gap-based Planning in Dynamic Settings 31

6.3.2 Empty

Given that this environment is solely comprised of a single room, these trials can
be used to evaluate each planner’s pure dynamic obstacle avoidance mechanisms.
Results for this environment are shown in Figure 15. For the static version of the
empty environment, all planners succeeded on all 25 trials. The only notable takeaway
from this set of tests is that the CADRL planner took roughly three times longer
(79 — 91 seconds) to reach the goal compared to other baselines (28 — 36 seconds).

For the dynamic version of the empty environment, failure modes start to arise. In
this setting, all unsuccessful trials are the result of collisions, and no timeouts were
observed. Average performance across the classical cost map-based planners (the
leftmost four benchmarks) is on par with the average performance for the learned
planners (the middle four benchmarks), with the classical planners averaging a
success rate of 42% while the learned planners average a success rate of 50%.
However, the learned planners exhibit more variance in that CADRL performs worse
(24% success rate) and LfLLH performs better (76% success rate) compared to the
average. Of the three environments, this is the one in which the set of learned
planners performs the best. This is in part due to the environment closely resembling
the training environments used to optimize the learned models, meaning that the
scenarios encountered in this environment were more likely to exist inside of the
distribution of data used to train the models.

While the costmap representation provides a way to discretely identify obstacles,
this set of planners still struggled at times to avoid oncoming obstacles. These
planners were often able to slightly adjust their heading to direct the ego-robot
away from nearby agents. However, when agents entered the local costmap heading
towards the ego-robot, the planners were not able to react in time to avoid the agent.

For the learned benchmarks, the planners all possessed the emergent property of
coming to a stop directly in front of obstacles when the robot encroaches upon them,
relying on non-adversarial motions of nearby agents to avoid collisions.

The GBPs all performed well in this setting. Gaps proved to be an effective
representation due to their ability to naturally bias the planning space away from
nearby obstacles. When agents did approach the ego-robot, the gap detection policy
naturally partitions the planning space to either side of these agents which guides
planning around the agents. The proposed version of dynamic gap deployed on a
holonomic robot model outperforms all other baselines in this environment.

6.3.3 Factory

The factory setting consists of one large room with many smaller isolated static
obstacles positioned within it, resembling real-world artifacts such as tables or pillars.
The results for this environment are shown in Figure 16. Here, the larger regions of
free space allow multiple agents to pass through the same part of the environment at
one time. This structure causes more collisions than the empty environment.

32 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

[E=Success C_1Timed OutE Failed I Failed and Timed Out

Fl = = = o~ = = e = & = | = e T T —}s—.%%%é

n n L L L T L L L L s ' . n n P n L P L . L
TEB CoHAN MPC DWA CADRL LLH RLCA DRLVO PGsp DGap DGapt DGapsNH TEB CoHAN MPC DWA CADRL LILH RLCA DRLVO PGasp DGap DGape DGaprNH

Fig. 15 Simulation benchmarking results for the Empty simulation environment. The left column
represents trials with no agents in the environment, and the right column is for trials with 15 agents
in the environment. The top row portrays navigation performance results for all benchmarks across
the 25 trials. Green bars (success) are successful trials in which the planner reached the goal under
the time limit without sustaining any collisions, yellow bars (time out) are trials for which the
planner does not reach the goal before the time limit but also does not sustain any collisions, orange
bars (failure) are trials for which the planner reaches the goal under the time limit but sustains
collisions, and red bars (failure and time out) are for trials that do not reach the goal under the time
limit and also sustain collisions. Results are shown in percentage format. The middle row depicts
the collision counts amongst failed trials, meaning how many collisions actually occurred during
each trial that registered a positive number of collisions. Lastly, the bottom row depicts average
time taken to reach the goal for successful trials.

The four learned baselines all accept either a single raw laser scan or a sliding
window of raw laser scans as their sensory input, meaning that these planners
do not perform any form of environment abstraction. Building an environment
representation can serve many purposes: reducing input size by distilling large sensor
data into lower-dimensional formats, extracting additional unobservable features
from the sensor data, and preprocessing the noisy sensor data to remove artifacts or
inaccuracies. By foregoing this environment abstraction step, the task of extracting
meaningful environment information from inputs becomes much more difficult for
a learned model. The authors posit that this is one of the reasons for the significant
performance drop amongst learned planners. The RLCA and DRL-VO models both
struggled heavily with the static structure of the environment and timed out on
a handful of trials because of their inability to get through narrow corridors or
around tight corners. These planners also rarely backed up when in collision with
the environment which can often help get the robot reset. The CADRL planner was
immensely slow, but this ended up helping the planner navigate through the static
environment. The other learned planners often over-rotated or over-compensated
other maneuvers, but CADRL was instead very deliberate. This allowed it to reach
the goal consistently, but at the cost of very limited collision avoidance abilities due

Safe Gap-based Planning in Dynamic Settings 33

to its slow pace. Not only do the learned planners exhibit more failed trials, the
individual failed trials also sustain a far greater number of collisions.

[E=ISuccess T Timed OutE] Failed M Failed and Timed Out

7 lope

- crssleagess 2 =a2d@]

TEB CoHAN MPC DWA CADRL LILH RLCA DRLVO PGap DGap DGapr DGapeNH TEB CoHAN MPC DWA CADRL LILH RLCA DRLVO PGap DGap DGapr DGapeNH

Hb
il
HH
4
i
HlH

Fig. 16 Simulation benchmarking results for the Factory simulation environment.

The four classical benchmarks all use a local costmap that is propagated through
the environment as the robot moves. This costmap takes in scan data and updates a
discrete occupancy grid. Then, this occupancy grid is inflated, scored, and planned
over. The Cartesian frame costmap is a very simple and intuitive environment rep-
resentation that makes planning algorithms such as search and optimization easy
to execute. Some baselines also perform motion estimation steps on this costmap
to predict how the map might evolve in the future. The classical baselines perform
better in the Factory environment than the learned baselines with no agents present as
well as with 15 agents present. However, the classical planners occasionally clipped
corners or hallways during navigation. Without agents, the classical baselines reg-
ister success rates of 80 — 96% compared to the success rates of 8 — 92% from the
learned baselines. With 15 agents, the classical baselines register success rates of
24 — 64% compared to the 4 — 32% success rates of the learned baselines.

The three gap-based benchmarks all plan using a gap-based environment rep-
resentation comprised of polar arcs of free space. This environment representation
requires minimal computation to synthesize and keeps the scan data in its raw polar
format, bypassing the preprocessing steps required to maintain a costmap. Being
able to build and propagate this gap-based representation pays dividends in practice,
with the family of GBPs exhibiting the best navigation performance of all baselines
with success rates of 36 — 84% in the dynamic setting. The ability of dynamic gap
to predict the feasibility of local gaps before committing to them proves paramount
in avoiding collisions in this environment. The proposed version of the dynamic
gap planner on the holonomic model outperformed the rest of the baselines with
its added gap propagation abilities, although the proposed planner on the nonholo-

34 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

nomic model only achieved a success rate of 36%. This can largely be attributed
to the model mismatch in which trajectories are planned through pursuit guidance
techniques under a holonomic model, but then tracked under a nonholonomic model.
The focus of this work was planning in dynamic environments, and future work will
extend dynamic gap to a nonholonomic model.

6.3.4 Hospital

The hospital environment exhibits many smaller rooms connected through tighter
passageways and corridors. Results for this environment are shown in Figure 17.
Compared to the factory environment, fewer collisions are registered in this environ-
ment because the corridors and small rooms offered fewer opportunities for several
agents to enter the same region and collide. Here, more trials ended in time outs,
either due to the planner getting stuck in a tight space and not being able to make
further progress in the environment, or due to the planner taking too long to reach
the goal. Given that this environment is more sprawling, the time taken to reach the
goal is higher on average, and more variance is seen in navigation times.

The CoHAN baseline tended to rotate and translate while trying to pass around
corners. As a result, the planner would often bump into the corner and “roll” around
it, resulting in several collisions. The MPC and DWA baselines occasionally drove
backwards through corridors as well.

[ESuccess [_ITimed OutEd Failed BB Failed and Timed Oul

: Ladgala_=1 . fjﬂé?

TEB CoHAN MPC DWA CADRL LILH RLCA DRLVO PGip DGap DGaps DGaprNH TEB CoHAN MPC DWA CADRL LILH RLCA DRLVO PGap DGap DGapr DGapeNH

Fig. 17 Simulation benchmarking results for the Hospital simulation environment.

The learned planners exhibited more failed trials and higher collision counts.
Overall, learned planners struggled with planning paths through narrow corners and
corridors. The RLCA planner tended to over-rotate, leading the ego-robot to hit
the walls surrounding corridor entrypoints. Once the robot hit the wall, the planner

Safe Gap-based Planning in Dynamic Settings 35

was unable to output negative velocity commands to have the robot back up, and
trial progress would typically end. The DRL-VO planner exhibited a strong bias in
its output space distribution, solely outputting positive (counterclockwise) angular
velocities. This would lead to situations where a simple hallway corner that could be
passed through with a clockwise rotation could take very long due to the planner’s
inability to rotate in that direction. The authors mitigated this bias by shifting the
interval of possible angular velocities towards negative values, but this only provided
marginal performance improvements. The CADRL baseline would commonly output
extremely small velocity values when the robot was close to static obstacles. This led
to situations in which the planner would take a corner too tight and stall out next to the
wall. The authors partially alleviated this issue by applying a small constant forward
velocity to the system when there were no obstacles in front of the robot, enabling
the robot to drive through these scenarios where the planner stalls out. The CADRL
and LfLH planners both possessed a “rotate-in-place” mode that would guide the
planner in aligning the ego-robot to point towards the next waypoint from the global
goal. This helped these planners get through difficult portions of the environment.

Overall, the GBPs fared well in this setting. While not designed for dynamic
settings, the planning behaviors of the potential gap planner still allowed it to nav-
igate through this environment’s internal structure. The two dynamic gap versions
performed very well, with the holonomic proposed version narrowly outperforming
its prior version with a success rate of 96% versus 92%.

6.4 Experiment Four: Timing

In this experiment, we report the average computation times in simulation and
hardware for all baselines use during benchmarking. A more in-depth computational
analysis is given for dynamic gap in Figures 18a - 18c. All timing experiments in
simulation are run in one scenario of the Factory environment with 15 agents present.

6.4.1 Dynamic Gap
6.4.2 Other Baselines

Planning rates and implementation details for other baselines are shown in Table 1.

Table 1 Reported Computation Times (Hz) for Simulation Benchmarks

TEB | CoOHAN | MPC | DWA | RLCA | CADRL | DRL-VO |LfLH|PGap|DGap| DGap+
71 201 39 6 593 539 36 22 26 47 62

36 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

Average Timing Per Step - Scan Loop

Average Timing Per Step - Plan Loop

18- 1 014
Overhead

Average Timing Per Step - Control Loop

(a) Timing for scan thread por- (b) Timing for control thread (c) Timing for control thread
trayed in Figure 4.3. portrayed in Figure 4.3. portrayed in Figure 4.3.

Fig. 18 Timing breakdown for dynamic gap planner. The scan thread can run at = 143 Hz in
simulation and ~ 959 Hz on hardware, but in practice it is set to the rate of the incoming sensor
data in both simulation and hardware which is 25 Hz. The planning thread can run at ~ 62 Hz (for
an average of 5.76 gaps per planning loop) in simulation and ~ 337 Hz (for an average of 5.80 gaps
per planning loop) on hardware, but in practice it is set to 5 Hz within the move_base framework.
The control thread is bound to the planning thread.

6.5 Experiment Five: Social Compliance Performance

A relative velocity cost function based on [90] is added to improve the social com-
pliance of the robot. This new planning variant is referred to as DGap* Social.

—
(max(VreyPrPh,O) + ||Vr||)
costre] vel = >
|77

The first term involves a dot product in order to penalize paths that are directed
towards a human. Moreover, the maximum term restricts the cost to situations in
which the robot is approaching a human rather than moving away from them. The
second term penalizes high velocities in the vicinity of a human.

Results related to social compliance were also collected from the same exper-
iments previously described in Section 6.3. As shown in Figure 19, DGap™ and
DGap™*Social achieved the highest success rates among all planners. However, they
also exhibited relatively high time spent in personal space which is defined as a
circle region surrounding the human with a radius of 0.5 m. This may be partially
attributed to the fact that only successful trials were included in the plot. In densely
crowded scenarios, many other planners likely failed early, producing no data for
those challenging cases. In contrast, DGap methods successfully navigated through
such environments which caused it to spend more time in close proximity to people,
thereby increasing their average time in personal space.

Interestingly, classical planners such as MPC, DWA, and TEB showed both rea-
sonably high success rates and comparable or lower time in personal space than most
learned methods. This outcome is somewhat surprising, given that learning-based
approaches are often claimed to yield superior social behavior. For instance, 90% of
DWA, TEB, and MPC trials had personal-space durations under 3 seconds, whereas

(26)

Safe Gap-based Planning in Dynamic Settings 37

90% of learned planners stayed under 4 seconds, excluding DRL-VO, which was
below 7 seconds. The COHAN planner had one of the lower success rates. This was
likely due to its tendency to attempt to pass in front of pedestrians, as well as its
occasional collisions with the environment when turning corners.

6.6 Experiment Six: Hardware Testing

In this section, the dynamic gap planner is deployed on a TurtleBot2, a differential
drive platform in which ROS code is executed from an onboard laptop.

6.6.1 Test One: Static obstacle course

In this test, the ability of the dynamic gap planner to operate in a static setting is
confirmed on hardware. The keyframes of this test are shown in Figure 20. In this
scenario, the goal is placed at the top of the frame. At frame i = 210, the ego-robot
selects the gap in the center of the frame. By frame i = 468, further gaps in the
environment are detected. The planner selects the gap to the left of the frame and
continues through this gap in frame i = 610. By frame i = 675, the planner has
passed through this left gap and continues up the frame through another front-facing
gap on its way to the goal.

Time in Personal Space [sec] vs. Success Rate
T T T

w

" eDRLVO [I [
2.8F b
2.6 4
o]
izh
8 24F ©PGap @ DGap+ |
< .
[2'22 r — © DGap+Spcial
= © DGap+NH
2 2r 1
2
3] L 4
~ 18 & &AorL
é 1.6 1
=) @ Cohan OLfLH
=145 oMPC SDWATED 8
1.2 b
1 1 I 1 1 I I I I I
0 10 20 30 40 50 60 70 80 90 100

Success rate [%]

Fig. 19 Comparison of various navigation algorithms based on their time spent in personal space
(in seconds) versus success rate (%).

38 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

Fig. 20 Hardware experiment one: static obstacle course. Left column depicts frames from the
hardware setup and right column depicts online environment visualizations from the planner. The
ego-robot (starting at the bottom of the frame) must travel to the top of the frame while avoiding
the array of static obstacles.

6.6.2 Test Two: Translating Agent

For this test, a second TurtleBot2 platform is programmed to track a straight line
path between two waypoints at a constant velocity. The ego-robot must travel past
this agent en route to the goal. The keyframes of this test are shown in Figure 21a.

At frame i = 85, the ego-robot is tracking a previously generated trajectory
through the middle of the frame towards the agent. At frame i = 175, the agent
completes the trajectory it had been tracking and selects a new trajectory that travels
to the right of the frame. However, at frame i = 265, predicts a collision with the
agent and switches to plan to the left of the agent. At frame i = 375, the agent reaches
its right waypoint and begins to travel back to the left of the frame, but at this point
the ego-robot has almost passed the agent. By frame i = 520, the ego-robot has
passed the agent and reached the goal.

6.6.3 Test Three: Translating Gap

In this test, two agents are programmed to track a straight line path between two
waypoints at a constant velocity, creating a translating gap that the ego-robot can
pass through en route to the goal. Keyframes from this test are shown in Figure 21b.

At frame i = 214, the dynamic gap planner propagates the central gap forward in
time and selects the trajectory that passes through this gap to be track. This trajectory
continues to be tracked at frame i = 267, and at frame i = 374 this trajectory is
completed. At this point, the planner generates trajectories through the central gap
that are biased to the left of the gap. These trajectories are biased because of their

Safe Gap-based Planning in Dynamic Settings 39

(b) Hardware experiment three: translating gap.
Left column depicts frames from the hardware

(a) Hardware experiment two: translating agent.
Left column depicts frames from the hardware

setup and right column depicts online environ-
ment visualizations from the planner. The ego-
robot (starting at the bottom of the frame) must
travel to a goal placed beyond the other Turtle-
Bot (starting in the middle of the frame) which
is translating back and forth.

setup and right column depicts online environ-
ment visualizations from the planner. The ego-
robot (starting at the bottom of the frame) must
travel to a goal placed beyond the two TurtleBots
that are translating back and forth so as to form
a gap between them.

Fig. 21 Hardware experiments two and three - translating scenarios.

propagated versions. At iteration i = 488, the ego-robot switches to a trajectory that
will reach the goal, and by i = 575 the planner reaches the goal.

6.6.4 Test Four: Receding Corridor

In this test, the planner must maneuver the ego-robot around an agent travelling
down a corridor. Keyframes from this test are shown in Figure 22. In this scenario,
the corridor is wide enough for the ego-robot to travel around the agent. The planner
opts to do so in frame i = 212 where the ego-robot begins to travel to the right of the
agent as the planner select the gap to the right of the agent. During frames i = 312
and i = 412, the planner continues planning to the right of the agent. By frame
i = 512, the ego-robot begins to cut back in front of the agent in order to reach the

40 Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

goal which is in the center of the corridor. By frame i = 645, the ego-robot reaches
the goal in front of the agent.

Fig. 22 Hardware experiment four: corridor - receding. Left column depicts frames from the
hardware setup and right column depicts online environment visualizations from the planner. The
ego-robot (starting at the bottom of the frame) must travel to the end of the corridor while the agent
in front of it also moves through the corridor.

7 Conclusion

This chapter introduces a novel perception-informed gap-based planner known as
dynamic gap. This planner is designed to operate in dynamic environments by
tracking locally detected gaps of free space over time, propagating these gaps forward
into the future to understand what subset of the free space remains feasible, and
applying the PN geometric law from pursuit guidance theory to generate collision-
free local trajectories under ideal conditions. Furthermore, the occupied polar regions
referred to as ungaps are detected and planned within under circumstances in which
no gaps exist. In this chapter, the dynamic gap planner is shown to outperform all
other evaluated baselines in simulation benchmarks when tested on a holonomic robot
platform. However, the planner performs worse when constrained to nonholonomic
dynamics. This is largely due to the model mismatch between the holonomic model
used to evaluate gap feasibility and generate local trajectories and the nonholonomic
model that these trajectories are subsequently tracked on. In the future, the authors
aim to integrate nonholonomic constraints directly into gap feasibility considerations
and trajectory synthesis to mitigate this mismatch.

Safe Gap-based Planning in Dynamic Settings 41

References

L.

2

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

J. J. Gibson, The Ecological Approach to Visual Perception, 2014.

R. Xu, S. Feng, and P. A. Vela, “Potential Gap: A Gap-Informed Reactive Policy for Safe
Hierarchical Navigation,” IEEE Robotics and Automation Letters, 2021.

S. Feng, Z. Zhou, J. Smith, M. Asselmeier, Y. Zhao, and P. A. Vela, “GPF-BG: A hierarchical
vision-based planning framework for safe quadrupedal navigation,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA), 2023.

S.Feng, A. Abuaish, and P. A. Vela, “Safer Gap: A Gap-based Local Planner for Safe Navigation
with Nonholonomic Mobile Robots,” Mar. 2023, arXiv:2303.08243 [cs, eess].

H. Chen, S. Feng, Y. Zhao, C. Liu, and P. A. Vela, “Safe Hierarchical Navigation in Crowded
Dynamic Uncertain Environments,” in 2022 IEEE 61st Conference on Decision and Control
(CDC), Dec. 2022.

E. C. Contarli and V. Sezer, “Predictive Follow the Gap Method for Dynamic Obstacle Avoid-
ance,” in 2024 13th International Workshop on Robot Motion and Control, 2024.

M. Asselmeier, D. Ahuja, A. Zaro, Y. Zhao, and P. A. Vela, “Dynamic Gap: Safe Gap-based
Navigation in Dynamic Environments,” 2025.

. L. Kastner, T. Buiyan, X. Zhao, L. Jiao, Z. Shen, and J. Lambrecht, “Arena-Rosnav: Towards

Deployment of Deep-Reinforcement-Learning-Based Obstacle Avoidance into Conventional
Autonomous Navigation Systems,” Sep. 2021.

L. Kistner, T. Bhuiyan, T. A. Le, E. Treis, J. Cox, B. Meinardus, J. Kmiecik, R. Carstens,
D. Pichel, B. Fatloun, N. Khorsandi, and J. Lambrecht, “Arena-Bench: A Benchmarking Suite
for Obstacle Avoidance Approaches in Highly Dynamic Environments,” IEEE Robotics and
Automation Letters, vol. 7, no. 4, Oct. 2022.

L. Kastner, R. Carstens, H. Zeng, J. Kmiecik, T. Bhuiyan, N. Khorsandi, V. Shcherbyna, and
J. Lambrecht, “Arena-Rosnav 2.0: A Development and Benchmarking Platform for Robot
Navigation in Highly Dynamic Environments,” Jul. 2023.

L. Kastner, V. Shcherbyna, H. Zeng, T. A. Le, M. H.-K. Schreff, H. Osmaev, N. T. Tran,
D. Diaz, J. Golebiowski, H. Soh, and J. Lambrecht, “Arena 3.0: Advancing Social Navigation
in Collaborative and Highly Dynamic Environments,” Jun. 2024.

D. Z. Wang, L. Posner, and P. Newman, “Model-free detection and tracking of dynamic objects
with 2D lidar,” The International Journal of Robotics Research, vol. 34, no. 7, 2015.

S. Vaskov, S. Kousik, H. Larson, F. Bu, J. Ward, S. Worrall, M. Johnson-Roberson, and
R. Vasudevan, “Towards Provably Not-at-Fault Control of Autonomous Robots in Arbitrary
Dynamic Environments,” Feb. 2019.

V. Vasilopoulos, G. Pavlakos, S. L. Bowman, J. D. Caporale, K. Daniilidis, G. J. Pappas,
and D. E. Koditschek, “Reactive Semantic Planning in Unexplored Semantic Environments
Using Deep Perceptual Feedback,” IEEE Robotics and Automation Letters, no. 3, Jul. 2020,
conference Name: IEEE Robotics and Automation Letters.

C. Rosmann, F. Hoffmann, and T. Bertram, “Timed-Elastic-Bands for time-optimal point-
to-point nonlinear model predictive control,” in 2015 European Control Conference (ECC),
2015.

——, “Track and include dynamic obstacles via costmap_converter,” 2018. [Online].
Available: http://wiki.ros.org/teb_local_planner

T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++: Dynamically-Feasible
Trajectory Forecasting With Heterogeneous Data,” Jan. 2021.

P. Besl and N. D. McKay, “A method for registration of 3-D shapes,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 14, no. 2, Feb. 1992.

B. Mishra, D. Calvert, S. Bertrand, J. Pratt, H. E. Sevil, and R. Griffin, “Efficient Terrain Map
Using Planar Regions for Footstep Planning on Humanoid Robots,” in 2024 IEEE International
Conference on Robotics and Automation (ICRA), May 2024.

H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval Research Logistics
Quarterly, vol. 2, no. 1-2, pp. 83-97, 1955.

http://wiki.ros.org/teb_local_planner

4

21.

22.

23.

24.

25.

26.

27.

28.
29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

V. Guizilini, R. Senanayake, and F. Ramos, “Dynamic Hilbert Maps: Real-Time Occupancy
Predictions in Changing Environments,” in 2019 IEEE International Conference on Robotics
and Automation (ICRA), 2019, pp. 4091-4097.

Z. Xu, X. Zhan, B. Chen, Y. Xiu, C. Yang, and K. Shimada, “A real-time dynamic obstacle
tracking and mapping system for UAV navigation and collision avoidance with an RGB-D
camera,’ in 2023 IEEFE International Conference on Robotics and Automation, 2023.

R. Senanayake and F. Ramos, “Bayesian Hilbert Maps for Dynamic Continuous Occupancy
Mapping,” in Proceedings of the 1st Annual Conference on Robot Learning, Oct. 2017.

J. Poschmann, T. Pfeifer, and P. Protzel, “Factor Graph based 3D Multi-Object Tracking in
Point Clouds,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Las Vegas, NV, USA: IEEE, Oct. 2020.

M. Gaertner, M. Bjelonic, F. Farshidian, and M. Hutter, “Collision-Free MPC for Legged
Robots in Static and Dynamic Scenes,” Mar. 2021, arXiv:2103.13987.

R. Senanayake, L. Ott, S. O’ Callaghan, and F. T. Ramos, “Spatio-Temporal Hilbert Maps
for Continuous Occupancy Representation in Dynamic Environments,” in Advances in Neural
Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,
Eds., vol. 29. Curran Associates, Inc., 2016.

P. Hart, N. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic Determination of Min-
imum Cost Paths,” IEEE Transactions on Systems Science and Cybernetics, 1968, publisher:
Institute of Electrical and Electronics Engineers (IEEE).

A. Stentz, “The D*Algorithm for Real-Time Planning of Optimal Traverses.”

S. K. a. M. Likhachev, “D* Lite.”

L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, ‘“Probabilistic roadmaps for path
planning in high-dimensional configuration spaces,” IEEE Transactions on Robotics and Au-
tomation, no. 4, 1996.

S. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” 1998.

S. Karaman and E. Frazzoli, “Sampling-based Algorithms for Optimal Motion Planning,”
2011.

M. Hiippi, L. Bartolomei, R. Mascaro, and M. Chli, “T-PRM: Temporal Probabilistic Roadmap
for Path Planning in Dynamic Environments,” in 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2022.

M. Zucker, J. Kuffner, and M. Branicky, “Multipartite RRTs for Rapid Replanning in Dy-
namic Environments,” in Proceedings 2007 IEEE International Conference on Robotics and
Automation. Rome, Italy: IEEE, 2007.

D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision avoidance,”
IEEE Robotics Automation Magazine, vol. 4, no. 1, pp. 23-33, 1997.

M. Missura and M. Bennewitz, “Predictive Collision Avoidance for the Dynamic Window
Approach,” in 2019 International Conference on Robotics and Automation (ICRA), 2019.

P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using the relative velocity
paradigm,” in [1993] Proceedings IEEE International Conference on Robotics and Automation,
1993.

——, “Motion Planning in Dynamic Environments Using Velocity Obstacles,” The Interna-
tional Journal of Robotics Research, 1998.

J. van den Berg, M. Lin, and D. Manocha, “Reciprocal Velocity Obstacles for real-time multi-
agent navigation,” in 2008 IEEE International Conference on Robotics and Automation, 2008.
J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal n-Body Collision Avoid-
ance,” in Robotics Research, B. Siciliano, O. Khatib, F. Groen, C. Pradalier, R. Siegwart, and
G. Hirzinger, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

S. Kousik, S. Vaskov, F. Bu, M. Johnson-Roberson, and R. Vasudevan, “Bridging the gap
between safety and real-time performance in receding-horizon trajectory design for mobile
robots,” The International Journal of Robotics Research, 2020.

S. Vaskov, U. Sharma, S. Kousik, M. Johnson-Roberson, and R. Vasudevan, “Guaranteed Safe
Reachability-based Trajectory Design for a High-Fidelity Model of an Autonomous Passenger
Vehicle,” 2019.

Safe Gap-based Planning in Dynamic Settings 43

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model Predictive Contouring Control for
Collision Avoidance in Unstructured Dynamic Environments,” 2020.

M. Vahs, R. I. C. Muchacho, F. T. Pokorny, and J. Tumova, “Forward Invariance in Trajectory
Spaces for Safety-critical Control,” 2024.

L. Heuer, L. Palmieri, A. Rudenko, A. Mannucci, M. Magnusson, and K. O. Arras, “Proactive
Model Predictive Control with Multi-Modal Human Motion Prediction in Cluttered Dynamic
Environments,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2023.

O. de Groot, L. Ferranti, D. M. Gavrila, and J. Alonso-Mora, “Topology-Driven Parallel
Trajectory Optimization in Dynamic Environments,” IEEE Transactions on Robotics, 2025.
A. S. Lafmejani, S. Berman, and G. Fainekos, “NMPC-LBF: Nonlinear MPC with Learned
Barrier Function for Decentralized Safe Navigation of Multiple Robots in Unknown Environ-
ments,” 2022.

K. Long, K. Tran, M. Leok, and N. Atanasov, “Safe Stabilizing Control for Polygonal Robots
in Dynamic Elliptical Environments,” 2024.

O. So, Z. Serlin, M. Mann, J. Gonzales, K. Rutledge, N. Roy, and C. Fan, “How to Train
Your Neural Control Barrier Function: Learning Safety Filters for Complex Input-Constrained
Systems,” 2023.

D. R. Agrawal, R. Chen, and D. Panagou, “gatekeeper: Online Safety Verification and Control
for Nonlinear Systems in Dynamic Environments,” in 2023 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2023.

L. Liitzow, Y. Meng, A. C. Armijos, and C. Fan, “Density Planner: Minimizing Collision Risk
in Motion Planning with Dynamic Obstacles using Density-based Reachability,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA), 2023.

P. Long, T. Fan, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards Optimally Decentralized
Multi-Robot Collision Avoidance via Deep Reinforcement Learning,” 2018.

M. Everett, Y. F. Chen, and J. P. How, “Collision Avoidance in Pedestrian-Rich Environments
with Deep Reinforcement Learning,” IEEE Access, 2021.

Z. Xu, G. Dhamankar, A. Nair, X. Xiao, G. Warnell, B. Liu, Z. Wang, and P. Stone, “APPLR:
Adaptive Planner Parameter Learning from Reinforcement,” 2020.

Z. Xie and P. Dames, “DRL-VO: Learning to Navigate Through Crowded Dynamic Scenes
Using Velocity Obstacles,” IEEE Transactions on Robotics, 2023, conference Name: IEEE
Transactions on Robotics.

Z. Wang, X. Xiao, A. J. Nettekoven, K. Umasankar, A. Singh, S. Bommakanti, U. Topcu, and
P. Stone, “From Agile Ground to Aerial Navigation: Learning from Learned Hallucination,”
2021.

X. Xiao, B. Liu, G. Warnell, and P. Stone, “Motion Planning and Control for Mobile Robot
Navigation Using Machine Learning: a Survey,” 2022.

Z. Xu, B. Liu, X. Xiao, A. Nair, and P. Stone, “Benchmarking Reinforcement Learning Tech-
niques for Autonomous Navigation,” 2023.

X. Xiao, Z. Xu, A. Datar, G. Warnell, P. Stone, J. J. Damanik, J. Jung, C. A. Deresa, T. D.
Huy, C. Jinyu, C. Yichen, J. A. Cahyono, J. Wu, L. Mo, M. Lv, B. Lan, Q. Meng, W. Tao, and
L. Cheng, “Autonomous Ground Navigation in Highly Constrained Spaces: Lessons Learned
From the Third BARN Challenge at ICRA 2024 [Competitions],” IEEE Robotics & Automation
Magazine, 2024.

A. Nair, F. Jiang, K. Hou, Z. Xu, S. Li, X. Xiao, and P. Stone, “DynaBARN: Benchmarking
Metric Ground Navigation in Dynamic Environments,” in 2022 IEEE International Symposium
on Safety, Security, and Rescue Robotics (SSRR), 2022.

P. T. Singamaneni, P. Bachiller-Burgos, L. J. Manso, A. Garrell, A. Sanfeliu, A. Spalanzani,
and R. Alami, “A survey on socially aware robot navigation: Taxonomy and future challenges,”
Int. J. Rob. Res., vol. 43, no. 10, pp. 1533-1572, Feb. 2024.

A.H.Raj, Z. Hu, H. Karnan, R. Chandra, A. Payandeh, and L. Mao, “Rethinking Social Robot
Navigation: Leveraging the Best of Two Worlds,” in 2024 IEEE International Conference on
Robotics and Automation (ICRA). 1EEE, 2024.

44

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.
7.
78.
79.
80.
81.
82.
83.
84.
85.

86.

87.

Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela

“Demonstrating Arena 3.0: Advancing Social Navigation in Collaborative and Highly Dynamic
Environm... | Robotics: Science and Systems,” 2025.

D. Connell and H. M. La, “Dynamic path planning and replanning for mobile robots using
RRT,” in 2017 IEEE International Conference on Systems, Man, and Cybernetics, 2017.

J. S. Smith and P. Vela, “PiPS: Planning in perception space,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA), 2017, pp. 6204-6209.

J. S. Smith, S. Feng, F. Lyu, and P. A. Vela, “Real-Time Egocentric Navigation Using 3D
Sensing,” in Machine Vision and Navigation, 2020, pp. 431-484.

J. S. Smith, R. Xu, and P. Vela, “egoTEB: Egocentric, Perception Space Navigation Using
Timed-Elastic-Bands,” in 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020, pp. 2703-2709.

V. Sezer and M. Gokasan, “A novel obstacle avoidance algorithm: “Follow the Gap Method”,”
Robotics and Autonomous Systems, 2012.

M. Mujahed, D. Fischer, and B. Mertsching, “Admissible gap navigation: A new collision
avoidance approach,” Robotics and Autonomous Systems, 2018.

——, “Safe Gap based (SG) reactive navigation for mobile robots,” in 2013 European Confer-
ence on Mobile Robots, 2013, pp. 325-330.

M. Mujahed and B. Mertsching, “A new gap-based collision avoidance method for mobile
robots,” in 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics
(SSRR), 2016, pp. 220-226.

M. Mujahed, H. Jaddu, D. Fischer, and B. Mertsching, “Tangential Closest Gap based (TCG)
reactive obstacle avoidance navigation for cluttered environments,” in 2013 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), 2013.

M. Mujahed and B. Mertsching, “The admissible gap (AG) method for reactive collision
avoidance,” in 2017 IEEE International Conference on Robotics and Automation (ICRA),
2017.

M. Mujahad, D. Fischer, B. Mertsching, and H. Jaddu, “Closest Gap based (CG) reactive obsta-
cle avoidance Navigation for highly cluttered environments,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2010.

Z. Ullah, X. Chen, S. Gou, Y. Xu, and M. Salam, “FNUG: Imperfect Mazes Traversal Based
on Detecting and Following the Nearest-to-Final-Goal and Unvisited Gaps,” IEEE Robotics
and Automation Letters, 2022, conference Name: IEEE Robotics and Automation Letters.

M. Demir and V. Sezer, “Improved Follow the Gap Method for obstacle avoidance,” in 2017
IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2017.

O. d. Groot, L. Ferranti, D. M. Gavrila, and J. Alonso-Mora, “Topology-Driven Parallel
Trajectory Optimization in Dynamic Environments,” 2024.

S. T. O’Callaghan and F. T. Ramos, “Gaussian process occupancy maps,” The International
Journal of Robotics Research, 2012.

F. Ramos and L. Ott, “Hilbert maps: Scalable continuous occupancy mapping with stochastic
gradient descent,” The International Journal of Robotics Research, no. 14, 2016.

M. Missura, A. Roychoudhury, and M. Bennewitz, “Polygonal Perception for Mobile Robots,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020.
N. Shneydor, Missile Guidance and Pursuit: Kinematics, Dynamics and Control (1st ed.).
Horwood Series in Engineering Science. Chichester, UK: Horwood Publishing, 1998.
“Implementation of the Pure Pursuit Path Tracking Algorithm.” [Online]. Available: https://
www.ri.cmu.edu/publications/implementation- of-the- pure-pursuit-path- tracking-algorithm/
L. Wellhausen and M. Hutter, “ArtPlanner: Robust Legged Robot Navigation in the Field,”
Field Robotics, vol. 3, no. 1, pp. 413—434, 2023.

A. Bernhart, “Polygons of pursuit,” Scripta Mathematica, vol. 24, Jan. 1959.

——, “Curves of general pursuit,” Scripta Mathematica, vol. 24, Jan. 1959.

A. Bruckstein, “Why the ant trails look so straight and nice,” The Mathematical Intelligencer,
vol. 15, pp. 59-62, Jan. 1993.

V. Rajasekhar and A. G. Sreenatha, “Fuzzy logic implementation of proportional navigation
guidance,” Acta Astronautica, 2000.

https://www.ri.cmu.edu/publications/implementation-of-the-pure-pursuit-path-tracking-algorithm/
https://www.ri.cmu.edu/publications/implementation-of-the-pure-pursuit-path-tracking-algorithm/

Safe Gap-based Planning in Dynamic Settings 45

88.

89.

90.

91.

92.
93.

Y. Ulybyshev, “Terminal Guidance Law Based on Proportional Navigation,” Journal of Guid-
ance, Control, and Dynamics, 2005.

“move_base Package.” [Online]. Available: https://wiki.ros.org/move_base

P. Teja Singamaneni, A. Favier, and R. Alami, “Human-Aware Navigation Planner for Diverse
Human-Robot Interaction Contexts,” in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2021.

C. Rosmann, A. Makarow, and T. Bertram, “Online Motion Planning based on Nonlinear
Model Predictive Control with Non-Euclidean Rotation Groups,” in 2021 European Control
Conference (ECC), 2021.

R. Vaughan, “Massively multi-robot simulation in stage,” Swarm Intelligence, 2008.

M. Everett, Y. F. Chen, and J. P. How, “Motion Planning Among Dynamic, Decision-Making
Agents with Deep Reinforcement Learning,” 2018.

https://wiki.ros.org/move_base

	Safe Gap-based Planning in Dynamic Settings
	Max Asselmeier, Abdel Zaro, Dhruv Ahuja, Ye Zhao, and Patricio A. Vela
	Acronyms
	Introduction
	Navigation in Dynamic Environments
	Planning Considerations
	Planning Approaches
	Social Navigation

	Planning in the Perception Space
	Preliminaries
	Gap
	Ungap
	Gap Tube

	Dynamic Gap Local Planning Module
	Gap Generation
	Gap Association
	Gap Estimation
	Gap Manipulation
	Gap Feasibility Analysis
	Gap Trajectory Generation
	Gap Trajectory Scoring
	Gap Trajectory Comparison
	Gap Trajectory Tracking
	Projection Operator

	Experimental Results
	Experiment One: Assumption-satisfying Experiments
	Experiment Two: Canonical Scenarios
	Experiment Three: Simulation Benchmarking
	Experiment Four: Timing
	Experiment Five: Social Compliance Performance
	Experiment Six: Hardware Testing

	Conclusion
	References
	References

