
Continuous Design Variable Optimization in Modular Robot Design
through Deep Reinforcement Learning

Max Asselmeier1, Julian Whitman2 and Howie Choset2

Abstract— Modular robots allow for a robust method of
catering a robotic system to the task, or tasks, that it is to
complete. However, many of the methods that develop ways to
generate modular robot designs do so with a finite, discrete
pool of modules to pick from. The methods that are able
to handle continuous design parameters for these modular
arms do not currently leverage the efficiency afforded by deep
reinforcement learning algorithms. Continuous design variables
would offer another level of versatility and customization with
regards to the creation of modular robotic systems. Addi-
tionally, reinforcement learning is a computationally efficient
way of evaluating modules that can be added to an existing
modular arrangement, which is normally an exponentially
complex problem. In this work, we offer forth a framework that
allows for the combination of the discrete decision of selecting
a module group to add to an arrangement through a Deep-Q
Network with a continuous decision that optimizes the design
variables for the given module group through the Soft Actor-
Critic algorithm. We then provide results for the training of
the Deep-Q Network on a set of finite modules along with
the training of the Soft Actor-Critic algorithm on a relaxed
constraint problem.

Index Terms— Kinematics, Novel Deep Learning Methods,
Reinforcement Learning, Task Planning

I. INTRODUCTION

The modular design of robotic arms allows for the special-
ization of a robot to the task that it is to complete. However,
this specialization hinges upon the ability to identify an
optimal design, or the proper sequence of modules used to
create a robotic arm. This process allows for an expansive
amount of creative choices and a high degree of optimization
with regards to the specific application of a robotic arm: the
more modules that are available to use, the more types of
arms that can be generated and the more types of tasks that
can be completed. Human experts are capable of generating
these optimal robotic arm designs, but this greatly restricts
the types of users that can create these arms. Developing a
tool capable of learning how to design a modular arm would
allow a layperson to engage with this design process and
potentially even create a design that an expert user could
not conceive of. Additionally, this tool would be useful in
situations where the task at hand changes frequently over
time. Each unique task would require a re-design from an
expert user whereas this tool would be able to produce a
useful design in a much quicker fashion.

1Max Asselmeier is with the Department of Mechanical Science and
Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
ma53@illinois.edu

2Julian Whitman and Howie Choset are with The Robotics In-
stitute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
{jwhitman, choset}@cmu.edu

The recent advancements in deep learning have allowed
for the utilization of reinforcement learning (RL) as a tool
for facilitating search problems such as modular robot design
[1], [2]. Computational complexity and time are severe lim-
itations to how large search trees can be, and deep learning
provides heuristics for solving these search problems. For
modular robot design, the variations of the arrangements
of modular arms grow exponentially with the number of
different modules that can be added, but deep reinforcement
learning provides ways to evaluate module arrangements and
focus on those that may be of interest. With this being said,
reinforcement learning tools like neural networks also have
limitations on how they generate these evaluations. Prior
work [1] on this project has employed the use of a Deep-
Q Network (DQN), a popular tool in reinforcement learning
which requires a finite output space. This type of network
provides state-action values known as Q-values that function
as scores for each possible action that can be taken from
a given state. This works well for modular robot design,
but only if we sample from a discrete pool of modules.
If we want to adjust design parameters such as the length
or mass of a link, then we will end up with an infinitely
large action space with each action representing a link of
an infinitesimally smaller or larger length or mass, and our
problem quickly becomes intractable. This option to tweak
design parameters for a robotic arm provides more freedom
and flexibility for automated modular robot design, but a
different approach that is specifically designed for continuous
action spaces must be used.

In this paper, we build on prior methods of modular
robot design [1] and develop a framework that would allow
for the utilization of a continuous action space. We also
initiate work on training a deep RL algorithm that can output
the optimal continuous design variables for a certain task.
Our framework involves a hierarchical structure of neural
networks separating the task of adding a new module to an
already existent arrangement of modules into two sub-tasks.
A primary network would first choose the discrete type of
module to be added to a modular arm such as a link or
bracket. Then, a secondary network would set the module
type’s corresponding design variables. Setting these design
variables could be a discrete decision such as choosing if
a bracket will be pointed either towards or away from the
robotic arm, or it could be a continuous decision such as
setting the length of a link. The ability to set or alter these
continuous design variables, and more so to do this in the
same networks that set the discrete design variables, would
allow for a much greater breadth of options when it comes

to which modules are being added to the robotic arm and
what characteristics these modules possess.

In this paper, Section II will detail literature and concepts
that are related to the work discussed in this paper. Section
III will explain the potential methodology of our hierarchical
neural networks along with supplementary information for
our tasks and solutions. Section IV will present our results,
Section V will involve closing remarks on this research, and
finally, Section VI will provide limitations of this work along
with directions for future research.

II. BACKGROUND

A. Related Works

Previous implementations of modular design synthesis
exist, but these methods typically utilize a discrete set of
modules. Tools ranging from interactive design systems to
best-first graph searches make use of libraries of standard
modular components from which complete arrangements
for modular robots are created [2], [3], [4]. Evolutionary
algorithms are also used to compose robot designs from
a finite set of modules [5]. However, these methods all
select from a finite number of modules. Genetic algorithms
have been able to optimize a mixture of both discrete and
continuous design variables [6], but this work does not
leverage the deep learning algorithms frequently used now.

Deep learning within robot design has been employed in
other forms. For instance, deep learning tools have been
utilized to jointly learn not only the structure or design of a
robot, but also the robot’s motion control policy [7], [8].
Also, prior work on this project has involved utilizing a
Deep-Q Network to generate efficient designs for modular
serial manipulators [1]. The synthesis of robot designs from
a discrete pool of modules allows for the development of
robotic systems that are customized towards their given
tasks. However, confining modular design synthesis to a
set of modules does enforce restrictions on both the types
of robots that can be created and the types of tasks that
can be accomplished. Continuous design variables would
allow for much more freedom when it comes to creating
modular robots, and multiple deep learning algorithms that
are applicable to continuous action spaces have already been
developed.

B. Deep learning in continuous output spaces

Several deep learning algorithms are able to be utilized
within continuous output spaces. One way that these algo-
rithms can produce continuous outputs is through methods
such as using soft bounding functions to limit the regular
outputs of a network’s layer to the desired bounds of a given
action. The Deep Deterministic Policy Gradients (DDPG)
algorithm [9], the deep version of the previously developed
Deterministic Policy Gradients [10]. DDPG is a model-free,
off-policy algorithm that learns a deterministic policy by
using the aforementioned bounding functions. The Twin De-
layed Deep Deterministic (TD3) policy gradients algorithm
is a modification to DDPG that also does this.

Algorithms can also generate these continuous outputs by
producing the mean and standard deviation for a distribution
and sampling from this distribution to obtain values. The
Soft Actor-Critic (SAC) algorithm [11] is a model-free, off-
policy algorithm that performs this idea of sampling from a
distribution.

Prior work has used these deep learning algorithms within
continuous action spaces to have robot platforms learn simple
and compound abstract tasks [12] as well as learn complex
manipulation tasks [13]. Deep RL has also been used to learn
motion planners with continuous outputs for robotic systems
as well. However, no prior work has incorporated continuous
action spaces into modular robot design. Our work on this
project has initiated the exploration of the optimization of
continuous actions within modular design synthesis.

C. Deep learning for Modular Robot Design

Our modular design problem is treated as a finite Markov
Decision Process where modules that are to be serially
added to an arrangement are evaluated based on the current
arrangement as well as the goal position of the episode.
The module currently being added to the arrangement is
connected to the module that was previously added.

Therefore, the state st of this problem is comprised of
the active arrangement of the arm, or what modules are
currently within the arm along with the goal position that
is to be reached. An action at is referred to as the process of
appending a new module onto the arrangement, and a reward
rt is obtained from the environment at each step based on
both the state and the action that is taken. Further information
on discrete Q-learning for modular robot design can be found
in the previous work on this project [1].

The Soft Actor-Critic algorithm is employed in this project
to begin work on the implementation of deep RL on contin-
uous design variables in modular robot design. While most
other algorithms only attempt to maximize the expected re-
wards achieved throughout training, SAC seeks to maximize
the expected reward of the actor while also maximizing the
entropy of the actor. This means that SAC attempts to have
the actor succeed at the given task as frequently as possible
while varying its actions as much as possible as well. This
idea is evident when viewing the objective function used for
the previously discussed algorithms such as DDPG or TD3

J(π) = ΣtE(st,at)∼pπ [r(st, at)], (1)

where st, at, and r(st, at) are our state, action, and reward
respectively at a certain step, and pπ is our policy. This
objective function can then be compared to the augmented
objective function that is used for SAC

J(π) =

T−1∑
t=0

E(st,at)∼pπ [r(st, at) + αH(π(·|st))]. (2)

We can see that an entropy term denoted by H is added to
the reward, and the importance of the entropy term is decided
by the temperature parameter α. If α is set to zero, then
the traditional objective function based solely on expected
rewards is recovered.

With our objective function in mind, the soft Bellman
Equation that is used to estimate the state-action value
function Qπ can be formulated as:

Qπ(st, at) = r(st, at) + γEst+1∼ps [V
π(st+1)] (3)

where the soft value V π(st) is equal to

V π(st) = Eat∼π[Qπ(st, at)− α log π(at|st)]. (4)

Here it can be seen that the entropy term for SAC is
defined as the negative log of the current policy.

SAC adapts the double-Q learning trick used in TD3 where
two critic networks are trained. Once an action is taken, both
critics will evaluate the action and return their respective Q-
values. When the networks are being trained, the lesser of
the two Q-values between the two critics is taken to reduce
overestimation bias. SAC also uses target networks [14] and
experience replay [15] to facilitate and stabilize the training
of the networks. Furthermore, we use Hindsight Experience
Replay (HER) [16] which is a data augmentation technique
applied to the replay buffer during training to help with the
sparse reward function that is used as part of this work.

III. METHODS

This project adapts much of its framework from prior
work on this project [1]. We previously utilized a DQN
to approximate the state-action values for a set of modules
that can be added to a robotic arm. However, since one
of the core ideas of this project is the implementation of
continuous action spaces which are incompatible with DQNs,
the framework that we developed plans on using our DQN
in a slightly different way. For this framework, our DQN
would instead select the type of module to be added. For
instance, instead of selecting a link with predetermined
design variables, the DQN selects the overall module group
of “link”, and the variables would be set later on in the
architecture of the problem. This combination of discrete and
continuous decisions was not achieved during this project,
and plans to implement it are detailed in section VI. The
desired framework for this hierarchy is detailed below.

The DQN and SAC networks will still be used to design an
optimal modular arm design given a goal position in space.
The inputs to the networks would aim to represent the current
state of the arm along with the goal position that the arm is
to reach. The outputs of these networks would aim to select
the best possible module that could be appended to the arm
in order to reach the goal position. A reward is given to the
networks if the arm is able to get within a certain distance
to the goal position, and the networks selects modules to
maximize both the amount of rewards obtained along with
the randomness of the modules chosen.

The task space for this problem is limited to one position
p ∈ R3 where p = [px,py ,pz]. This means that during each
episode of training, inverse kinematics (IK) is performed on
the end-effector of the arrangement with the respective point
p of that episode as the goal position. Inverse kinematics is
solved through the module PyBullet [17] with the Damped
Least Squares method [18]. A tolerance εp is set so that

a reachability function for an arrangement A ∈ RNmax×Nm
where Nmax is the maximum number of modules allowed in
an arrangement and Nm is the number of modules to choose
from and target position T ∈ R3 can be defined as follows:

reach(A, T) =

{
1 || p− pEE || < εp

0 otherwise.
(5)

Where pEE is the location of the end-effector of the
arrangement in space after forward kinematics has been
performed on the arrangement using the angles obtained
through inverse kinematics. These modular arrangements are
also evaluated on other non-terminal conditions such as the
mass and complexity of the arrangement. The mass of the
arrangement M(A) is simply calculated by summing up the
masses of the individual modules in the arrangement, and the
complexity of the arrangement is represented by the number
of actuated joints in the arrangement NJ(A). An objective
function for these conditions can be defined as

F (A, T) = −wJNJ(A)− wMM(A) + reach(A, T). (6)

Weights wJ and wM are determined by the user based on
how important the mass and complexity of the arrangements
are. Therefore, it follows that an optimal arrangement is
capable of maximizing this function for its singular goal
position:

A∗ = arg max
A

F (A, T) (7)

Now, we outline the proposed way to train these networks
to discover and select these optimal arrangements.

A. DQN for module group selection

The actions from our DQN are chosen from a set of
four options: actuators, brackets, links, and end-effectors. As
of now, the links are the only module group that support
continuous design variables. For the other three module
types, the DQN simply would select from a discrete pool
of modules with predetermined design variables.

The arrangement of each modular arm would be repre-
sented through a list of one-hot vectors such that each index
of a vector indicates either the discrete module chosen for
the arrangement or the module group selected in the case of
a link.

The design variables for the arrangement would be rep-
resented through a list of vectors where each index of the
vectors represents a singular design variable for the module
that is at the position in the arrangement of the corresponding
index of the vector within the list. If a module within the
arrangement were to be chosen from a discrete set and
therefore not possess any continuous design variables, then
its vector of design variables would simply consist of all
zeroes. Also, if an arrangement would be to end with less
than the maximum number of modules, then the vectors
occupying the empty indices of the list would also contain
all zeroes.

The design variables would be passed through a pre-
processing layer for the module type that is to be added so

that even if the numbers of design variables for two types of
modules are different, the outputs of the pre-processing layer
are still the same size. For instance, a pre-processing layer for
links would accept as its input the design variables for a link,
a pre-processing layer for brackets would accept as its input
the design variables for a bracket, and both of these layers
would have the same size outputs. All of these outputs can
be appended for a given arrangement so that the processed
design variable list is the same size for all arrangements. The
structure of the networks is further detailed in Figure 1.

At each step within an episode, the DQN would either
select a discrete module or a module group. If a discrete
module is chosen, then this module would just be appended
to the arrangement and there would be no more activity
from the networks for the duration of this step. However,
if a module group were to be chosen, then the state of the
arrangement along with the module group to be added would
be passed to the SAC networks.

The reward function would be identical for all arrange-
ments and it would consist of non-terminal and terminal
components. The non-terminal penalties would come from
the mass and complexity of the module m that is to be added
to the arrangement:

r(m) = −wJNJ(m)− wMM(m) (8)

If the module that is chosen by the DQN were to be an
end-effector, then the action as well as the next state of
the arrangement would be terminal, and a terminal reward
would be returned. The terminal reward function evaluates
two features of the arrangement. If the maximum number
of modules for an arrangement is reached without an end-
effector being added to the arm, then a terminal reward of -1
would be returned. Otherwise, if an end-effector were to be
added at any point along the arrangement, then the previously
detailed reachability function for the arrangement would be
evaluated

rterminal =


−1 length(A’) == Nmax

and m is not an EE
reach(A′, T) m is an EE

(9)

where A′ is the arrangement after the action has been taken
and EE is an end-effector.

B. SAC for design variable selection

SAC consists of an actor-critic framework where a single
actor network learns a stochastic Gaussian policy by out-
putting mean and standard deviation values that can be used
to create a Gaussian distribution. Actions are then sampled
from this distribution. Two critic networks evaluate and
return Q-values for the actions taken by the actor network.
The actor network accepts the state as its input and outputs
actions, and the critic networks accept the state as well as
the current actions and outputs a Q-value that evaluates the
action taken.

Fig. 1. The structures that we used for our DQN and SAC networks. A.)
shows our DQN, B.) shows the actor network for SAC, and C.) shows the
critic network for SAC. These networks use fully connected (FC) layers,
concatenations, rectified linear units (ReLU), and clamps between minimum
and maximum values. The DQN accepts an arrangement A and a target
position p as its input and outputs a Q-value for each discrete module or
module group. The Q-values span the number of modules or module groups
Nm. The SAC actor takes A and p as inputs as well, but also takes in our
processed design variables V of length na, the maximum number of design
variables in an arrangement. The actor outputs a mean µ and a logarithm
of a standard deviation log σ which are both used to calculate the action.
The critic for SAC takes in the same inputs as the actor while also taking
in the action a chosen by the actor. The critic outputs Q-values for each
design variable set by the action.

The state for the SAC algorithm would consist of the same
elements as the DQN: the current arrangement of the arm
along with the goal position that the arm is to reach, but
then we would also incorporate the design variables that are
set for each module.

In our work, the SAC networks were not configured to
train on the IK problems, and they were instead trained on a
variable range problem where the sum of the lengths as well
as the sum of the twists of all the links in the arrangement

had to fall within a randomly generated range. The twist of
a link is the angular difference between the two joint axes
at both ends of the link.

Since our SAC networks have only been adapted to links
within our arrangements, the reward function only consists of
one non-terminal component which penalizes for the mass
of a link. The mass is penalized to encourage lighter and
cheaper arrangements.

r(m) = −wMM(m) (10)

C. Training the neural network architecture

For this project, the DQN was trained on a finite module
set to determine that the network functioned properly. At the
beginning of each episode, the target position is generated
from a random uniform distribution. The X and Y indices of
the target position are generated from the range [-0.5, 0.5]
whereas the Z index is generated from the range [0.0, 0.5].

As an episode progresses, the arrangement grows by
appending a module after each step. At each step, the DQN
outputs Q-values for each possible discrete module. The pro-
posed continuous framework would have the DQN instead
output a Q-value for each module group. The masking of cer-
tain actions is performed to ensure that each type of module
can only connect to a certain subset of modules. For example,
two actuators cannot be connected and two non-actuators can
be connected. Q-values are learned for all actions, but only
the Q-values for valid actions are evaluated when selecting an
action. The Boltzmann exploration strategy is employed for
the DQN in order to handle exploration and exploitation [19].
Often times when building an arrangement for a modular
robot, multiple modules represent valid additions that can
lead to high-reward states. With this in mind, a method
such as ε-greedy fails to account for the exploration of
multiple valuable actions since ε-greedy will either pick an
action at random or choose the single most valuable action.
Boltzmann exploration makes the process of choosing an
action stochastic by creating a probability distribution across
all valid actions. This allows higher value actions to still be
selected more often while also ensuring that no single action
is repeatedly exploited. A temperature parameter can also be
adjusted to make the probability distribution more or less
skewed towards higher value actions.

For the SAC networks, the actions are bounded by prede-
fined action limits. The length of a link is restricted to the
range of [0.0, 0.75] and the twist of a link is restricted to
the range of [0.0, 2π]. Exploration is encouraged through
the entropy term that is added to the objective function of
the SAC networks, and exploration is automatically added
through the random sampling of the Gaussian policy that is
generated by the actor network.

While training the SAC networks, actions are sampled
randomly from a uniform distribution for the first predefined
number of steps. This is done to ensure a proper amount of
initial exploration and to also allow for more uniformity with
respect to the initial weights of the network across separate
trials.

A replay buffer is utilized to allow for off-policy learning.
At each step, the state, action, reward, and next state are all
added to the replay buffer along with a variable signaling
if the action taken was a terminal one. Since the reward
function for our IK-based tasks is quite sparse, hindsight
experience replay (HER) is implemented [16] to ensure that
high-reward states are always existent within the buffer that
training batches are sampled from. If an episode terminates
and the end-effector of the arrangement is not within the
distance threshold εp of the goal position to earn the terminal
reward of one, then the same exact tuples of the state, action,
reward, next state, and terminal variable are added to the
replay buffer again, but now with their goal position as
the point in space that the end-effector ended up reaching.
However, if the final position of the end-effector lies outside
of our original goal ranges, then the tuples are not added to
the replay buffer.

Validation checks are also made at certain intervals of
training to determine how the policy is being updated
throughout training. These validation checks are made by
simply having the policy construct an arrangement with
solely exploitative actions.

IV. RESULTS

The results of this project contain results obtained from
training the DQN on a finite set of modules as well as
results from training the SAC networks on a relaxed problem
that requires the design variables of the links within an
arrangement to fall within certain goal thresholds. Both of
these training series occurred separately, and the DQN and
SAC networks were not trained together.

Figure 2 shows the total rewards earned from the DQN
arrangements during training. These results were tabulated
over three trials. It can be seen that for roughly the first
500 episodes of training, the total rewards are negative. This
is due to the fact that at the beginning of our training, our
Boltzmann exploration tends to select actions uniformly, so
modules that are less helpful for reaching a goal position
will be selected more often. Also, the network has only
just started to train, and it has not seen enough high-reward
states to learn what arrangements are able to reach the goal
positions.

Figure 3 demonstrates the total rewards earned for the
simplified SAC training. These results were also obtained
over three trials, and similar trends to the rewards for the
DQN training can be observed. The total rewards are negative
for roughly the first 500 episodes for the same reasons
provided for the DQN training, and soon after this the
networks are able to select states that earn positive rewards
which leads to a positive, linear increase in total rewards for
the remainder of the training.

Figures 4 - 8 demonstrate the evolution of arrangements
throughout the validation checks. Earlier arrangements are
frequently much too short to reach goals, and as more
training episodes are done, these arrangements tend to have
the proper number of modules to allow the end-effector to
reach the goal. Later on in training, the DQN also learns to

Fig. 2. A plot of the total rewards earned from the DQN over all of the
training episodes. These results are averaged over three training trials, and
a reward of one was given if the arrangement was able to get within two
centimeters of the goal position while minor penalties were given for the
mass and complexity of the arrangement at all steps.

Fig. 3. A plot of the total rewards earned from the SAC networks over
all of the training episodes. These results are averaged over three training
trials, and a reward of one was given if both the length and twist totals fell
within the randomized goal thresholds while a minor penalty was given for
the mass of the arrangement at all steps.

select efficient arrangements by choosing arrangements that
reach goals with the minimum amount of modules required.

V. CONCLUSIONS

Through this project, we have initiated work towards
deep learning in continuous action spaces for modular robot
design. We adapted a previous framework for deep RL from
this project [1] and developed a plan for a hierarchical
structure of neural networks that segments the process of
adding a module to a current arrangement of an arm into a
primary discrete section and a secondary continuous section.

We developed a potential structure for designing a modular
arm arrangement where we would use a Deep-Q Network
(DQN) to select either a discrete module to be added or a
module group that is to be optimized for the arrangement. If
a module group is selected, then the Soft Actor-Critic (SAC)
algorithm would then be employed to set the continuous
design variables for the type of module that is to be added
to the arm.

We found that the Soft Actor-Critic (SAC) algorithm
allowed us to successfully optimize continuous design vari-
ables when trained on a simplified version of our inverse
kinematics tasks, and this algorithm has also led to promising
results for our inverse kinematics tasks as well.

While the training of these hierarchical networks is not
entirely finished, we plan on continuing to work on this
project in the future. In Section 6, we go into more detail
about current limitations for this work as well as our plans
for this project in the future.

VI. LIMITATIONS AND FUTURE WORK

One limitation for our current work is that the SAC
networks have only been trained on the length and twist
variables for links. It is quite possible that different design
variables that possess different action limits will require
different amounts of training, and training our SAC networks
on more of these design variables could help us fine tune our
training. For instance, design variables could potentially be
introduced to our brackets to allow for another module group
that can be implemented into our SAC networks.

Looking forward, we want to optimize our SAC networks
to work for the inverse kinematics tasks that we utilize for
our modular robots. Once these networks would be able
to return optimal design variables for a single, constrained
arrangement, we would then want to integrate our SAC
networks into our DQN and simultaneously train the two
groups of networks at the same time. Being able to train
both the DQN and SAC networks would then allow us to
construct modular arrangements by selecting a module or
module group through our DQN and then having our SAC
networks optimize the design variables for the module that
is to be added.

Beyond this, we also want to incorporate target orienta-
tions into our target positions to allow for more challenging
or selective tasks. Having our modular arms satisfy both
position and orientation requirements allows our arms to
complete more tasks than if they were to just satisfy po-
sition constraints. For even a simple pick-and-place task, the
orientation of the end-effector of a gripper or robotic arm
is critical when it comes to properly picking up and setting
down objects. We also want to incorporate obstacles into our
environments to allow our networks to be more realistic and
versatile. Forcing our modular arms to satisfy position and
orientation constraints while also avoiding obstacles allows
for the more robust modular designs to stand out and obtain
higher rewards while also penalizing the more rigid designs
that cannot adapt to obstacles.

Fig. 4. Validation arrangements for the goal [0.1, 0.1, 0.1]. The numbers below the arrangements are the episodes at which these arrangements were
made. Notice how at the beginning of training, the network simply outputs a single actuator which is unable to reach any positions in space. However,
after only 250 episodes of training, the network is able to produce a more pragmatic design.

Fig. 5. Validation arrangements for the goal [0.2, 0.2, 0.2]. By episode 475, the network is able to produce an arrangement that can reach the desired
goal position. However, by the end of the training the network has learned that only two links are needed to reach the goal instead of three.

Fig. 6. Validation arrangements for the goal [0.3, 0.3, 0.3]. The arrangements for this goal actually follow a similar trajectory as those for the first
validation goal. However, the arrangements for this goal end with three links instead of two for the first goal.

Fig. 7. Validation arrangements for the goal [0.4, 0.4, 0.4]. The first few arrangements for this goal strictly use brackets which are not very effective for
reaching positions in space all by themselves. However, later on in the training the networks are able to use both links and brackets to reach the desired
goal position.

Fig. 8. Validation arrangements for the goal [0.5, 0.5, 0.5]. The network appears to learn at an early point in the training that several links will be required
to reach this goal position. This can be seen in the longer arrangement shown at episode 75. By the end of the training, the network still uses the same
number of links as it did at episode 75, but it has moved the bracket to be earlier on in the arrangement which allows the arrangement to be more flexible.

ACKNOWLEDGMENT

I would like to thank the Biorobotics Lab for hosting
me for this project and allowing me to engage with such

fascinating research. I would also like to thank the Robotics
Institute Summer Scholars program as well as specifically
Ms. Rachel Burcin and Dr. John Dolan for working so hard

to keep this program alive for this summer. Finally, I would
like to thank my home university, the University of Illinois at
Urbana-Champaign, for helping me to earn the opportunity
to participate in the RISS program. This material is based
upon work supported by the National Science Foundation
under Grant No. 1659774

REFERENCES

[1] J. Whitman, R. Bhirangi, M. Travers, and H. Choset, “Modular
robot design synthesis with deep reinforcement learning,” in AAAI
Conference on Artificial Intelligence, 2020.

[2] M. Bhardwaj, S. Choudhury, and S. Scherer, “Learning heuristic search
via imitation,” in In Conference on Robot Learning, 2017, pp. 271–
280.

[3] R. Desai, Y. Yuan, and S. Coros, “Computational abstractions for inter-
active design of robotic devices,” in In IEEE International Conference
on Robotics and Automation (ICRA), 2017, pp. 1196–1203.

[4] R. Desai, M. Safonova, K. Muelling, and S. Coros, “Automatic design
for task-specific robotic arms,” in ICRA Workshop on Autonomous
Robot Design, 2018.

[5] E. Icer, H. A. Hassan, K. El-Ayat, and M. Althoff, “Evolutionary
cost-optimal composition synthesis of modular robots considering a
given task,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017, pp. 3562–3568.

[6] Z. M. Bi and W. J. Zhang, “Concurrent optimal design of
modular robotic configuration,” Journal of Robotic Systems,
vol. 18, no. 2, pp. 77–87, 2001. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/1097-4563%28200102%
2918%3A2%3C77%3A%3AAID-ROB1007%3E3.0.CO%3B2-A

[7] C. Schaff, D. Yunis, A. Chakrabarti, and M. R. Walter, “Jointly
learning to construct and control agents using deep reinforcement
learning,” 2018.

[8] D. Ha, “Reinforcement learning for improving agent design,” Artificial
Life, vol. 25, no. 4, p. 352–365, Nov 2019. [Online]. Available:
http://dx.doi.org/10.1162/artl a 00301

[9] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” 2015.

[10] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” in Proceedings of
the 31st International Conference on International Conference on
Machine Learning - Volume 32, ser. ICML’14. JMLR.org, 2014,
p. I–387–I–395.

[11] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” 2018.

[12] Z. Yang, K. Merrick, L. Jin, and H. A. Abbass, “Hierarchical deep
reinforcement learning for continuous action control,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 29, no. 11, pp.
5174–5184, 2018.

[13] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,”
2016.

[14] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” 2015.

[15] M. Riedmiller, “Neural fitted q iteration – first experiences with a data
efficient neural reinforcement learning method,” in Machine Learning:
ECML 2005, J. Gama, R. Camacho, P. B. Brazdil, A. M. Jorge, and
L. Torgo, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 317–328.

[16] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight
experience replay,” 2017.

[17] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016–2020.

[18] S. R. Buss, “Introduction to inverse kinematics with jacobian trans-
pose, pseudoinverse and damped least squares methods,” IEEE Journal
of Robotics and Automation, vol. 17, no. 1-19, p. 16, 2004.

[19] A. G. Barto, S. J. Bradtke, and S. P. Singh, “Learning to
act using real-time dynamic programming,” Artificial Intelligence,
vol. 72, no. 1, pp. 81 – 138, 1995. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/000437029400011O

[20] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” 2018.

[21] H. V. Hasselt, “Double q-learning,” in Advances in Neural
Information Processing Systems 23, J. D. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, Eds.
Curran Associates, Inc., 2010, pp. 2613–2621. [Online]. Available:
http://papers.nips.cc/paper/3964-double-q-learning.pdf

[22] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value func-
tion approximators,” in International conference on machine learning,
2015, pp. 1312–1320.

[23] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-
eye coordination for robotic grasping with deep learning and large-
scale data collection,” 2016.

