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ABSTRACT
Human motion calls upon embodied strategies, which can be diffi-
cult to replicate in teleoperation architectures. This paper presents
a teleoperation method that centers around the Space component of
Laban Movement Analysis and may improve the dynamic complex-
ity of teleoperation commands, allowing a trained user to command
multiple joint angles at one time via a large database of stored poses,
which are indexed by Space parameters. In this paper, this method
is compared to a benchmark method, utilizing a joint-by-joint man-
ner of control on a Rethink Robotics Baxter with compliant limbs
using a Microsoft Xbox controller. Across four tasks with a trained
operator, analysis of the number of active joints at a given point
in time and time to completion emphasize the utility that comes
with the proposed method. In particular, for the two presented
static tasks, the average number of joint angles moving at one time
improves and completion times reduce for the proposed method.
Plots of behavior show additional qualitative differences in operator
strategies and resulting motion, which are also discussed. Future
work will extend this initial demonstration to more formal trials
with multiple operators. This method may help achieve more fluid,
continuous, and improvised motion in teleoperation of robots via
gamepads as are currently used in disaster response platforms.
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1 INTRODUCTION
Communicating commands to robots is still a limiting bottleneck
in teleoperation workflows, especially for dynamic or complex
tasks. Teleoperation schemes rely on (and excel at) precise motion
of end effector positioning. However, in dynamic environments
which require quick, complex movement, which may need to be
choreographed on the fly, these interfaces feel impoverished. On
the other hand, humans communicating tasks to other humans
can be astonishingly quick and effective at providing movement
commands to one another. For example, consider how a parking
attendant may guide someone to a specific location in a parking
garage or finding the correct set of actions to manipulate a parking
meter and pay stall. In both of these examples, the attendant will
use spatial commands; in the former example, these commands
will imply translation through space, while in the latter, the spatial
commands imply articulation of limbs and distal digits.

This paperwill extend amethod for translating spatial commands
to articulated poses for various platforms [1]. The aim of this work
is to encourage more complex, simultaneous movement that is
directly commanded by a user. In classifying such tasks, we make a
distinction between the number of appendages required as well as
the complexity of the task through the following examples. A task
like pressing a small button requires pin point accuracy, but does
not demand continuous progress or coordination of multiple joint
angles. On the contrary, an action like swimming can be general and
loose, but calls for constant motion in order to be completed. Thus,
we aim to complex tasks with multiple degrees-of-freedom moving
at once. We’ll show this feature is occurring in our teleoperation
method more than in a benchmarking method and that this feature
of operation may help accomplish certain kind of tasks.

Prior efforts have leveraged the use of artists to construct vari-
able robotic behavior, capturing artist manipulation of objects that
can be actuated, such as ground [2] and aerial vehicles [3]. These
are analogous to tools from the learning from demonstration com-
munity [4], which allow users to manipulate articulated bodies
in order to capture desired user behavior [5]. Such approaches
have also been used in a master-slave approach, where users can
manipulate a full-size, or scaled, model of the teleoperated device
to in order to communicate task; this approach is used in haptic-
sensitive instruments for surgery [6], humanoid robot control [7, 8],
and exoskeletons [9].

Another approach to generating human-designed motion on
robots has been to use motion capture systems and re-targeting
methods to generate behavior [10]. Motion capture of hands with
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gesture detection has been used for pick-and-place tasks [11]. An-
other source of action data has been EMG systems [12]. Gesture-
based control has also been developed [13]. Other methods have
looked at eye-tracking as an intuitive source for tele-operation
command input, but this work has not translated to articulated
motion [14]. These methods, which translate body-activity in a
literal way, require lots of space, sensitive instruments, and the
immediate mapping between human body action and robot action
is not always clear.

For multi-degree-of-freedom (articulated) robots, adaptive strate-
gies that automatically re-target action using reinforcement learn-
ing have been proposed [15]. Techniques that leverage visual ser-
voing have also been developed [16]. These methods can produce
dynamic, coordinated action based on the location of an object
of interest in a camera view; however, they do not give the op-
erator direct control over the bodily action of the robot, limiting
the ability for operator improvisation. In a comparative study of
gamepad-like input devices, researchers described this difficulty,
writing “Soldiers found that several robotic control functions could
not be performed simultaneously (e.g., raise the control arm while
turning the sensor head) with the multifunction controller. This
necessitated sequential operation which was time consuming and
difficult.” [17]. Teleoperation architectures tend to have tradeoffs
between desired features [18], and the method we propose here may
be a possible mode of operation to encourage such improvisational,
even creative, actions of operators in dynamic environments with
unexpected actions required of the platform.

Specifically, this paper describes an extension of a previously
developed user-command architecture [1] to a teleoperational sys-
tem using an Xbox gamepad as a control input. These input devices
are common in robotic teleoperation [19, 20], including used by
the military for the Endeavor Robotics PackBot device [21]. This
paper presents single-operator trials on a Rethink Robotics Baxter
platform as an initial demonstration of the strengths of our method
over more precise, traditional methods. This paper does not propose
effective user interface design, bandwidth or sampling rates, envi-
ronment awareness for a distantly located users, or other important
factors that contribute to teleoperation system performance [22].
Moreover, the paper does not suggest that this scheme replace ex-
isting schemes, like the joint-by-joint method we compare to here.
Instead, we propose a complimentary scheme that excels in certain
tasks and may connect better to channels of human embodiment.

Next, in Section 2, we will review Laban theory, on which the
prior architecture builds, and describe the prior motion specification
architecture and motivating results from user studies. Then, Section
3 describes the mapping of our prior method along with a more
common joint-angle-by-joint-angle control architecture that is used
as a baseline method. Results and analysis of the operator trials
are presented in Section 4, and concluding remarks with future
directions of work are outlined in Section 5.

2 LABAN SPACE HARMONY AND PRIOR
CONTROL ARCHITECTURE

This section will review a previously developed method for motion
specification and the Laban theory that supports it. This method,
named Robot Choreography Center (RCC) [1], revolves around

the Space component of Laban Movement Analysis. Specifically,
the method formally incorporates the idea of the kinesphere: the
spherical space around the body that you can move through with
your limbs. Within the kinesphere, there are three longitudinal
planes: the high plane, the middle plane, and the low plane. Within
a single plane, there are eight spatial directions as well: forward,
right, backward, left, and the diagonal directions between those
four as well.

These so-called “spatial pulls” were proposed by Laban as points
of interest around which harmonic movement scales could be de-
signed [23]. These scales continue to be used in the Laban/Bartenieff
Movement System as a referential point from which we can under-
stand and characterize movement patterns [24–27] and are used to
“install” new platforms into the RCC system.

During operation the RCC method takes advantage of these
spatial pulls and utilizes them as areas to move towards, implying
full body articulation as well as possible translation, as opposed
to simply rotating a joint through a certain angle. This provides
much more fluidity to motion by allowing for multi-joint actuation.
While one single joint is toggled onto at any given moment, the
commands from the RCC method do not restrict the rest of the
joints from moving, and other joints will rotate as well to satisfy
the given spatial pull. This is implemented through a large database
of stored poses as described in [1].

An additional option included in the RCC method is a variable
kinesphere size. There are near reach, mid reach, and far reach
kinespheres for movements that occur closer to our body, a little
further away from our body, and at the very edge of the maximum
size kinesphere. We implemented these options into the mapping
to allow for differently sized movements.

Motif symbols were leveraged in previous work [1] to index
the database of poses used in the RCC method. In this past work,
researchers needed to translate these symbols, used by users, to
strings of words that could be typed into a terminal and that mapped
to poses within the databases. The end product of this was very
similar to what the result of the RCC method is, but passing in
text-based parameters demanded manual translation.

This paper extends that prior work [1] by including a Microsoft
Xbox gamepad to operate the robot. In prior work, we demonstrated
the method across several platforms, but in this paper we focus only
on the Rethink Robotics Baxter platform. With this new controller,
the user still needs to be trained to understand what each and every
control means in terms of Laban Movement Analysis, as did users
in [1], but the action of utilizing a gamepad to move a robot allows
for direct operation of the robot through these concepts.

This prior work [1] also verified thesemethods through user stud-
ies where users were trained by certified movement analysts, and
then they were shown videos of movement tasks being performed
by themselves and robotic systems alike; overall, users expressed
satisfaction with the robots recreating the tasks using the RCC
methods. Thus, this method can be seen as a way to translate the
mental model humans have of how spatial direction should corre-
spond to coordinated joint action, by approximating the explication
of some of Laban’s ideas about Space Harmony.



Toward Expressive Multi-Platform Teleoperation MOCO ’19, October 10–12, 2019, Tempe, AZ, USA

Figure 1: Gamepad layout of the two methods. Left: joint-by-joing control (JBJ); right: the Laban-inspired method (RCC).

Figure 2: Architecture for teleoperation control.

3 GAMEPAD CONTROL EXTENSION AND
TASK DESIGN FOR EVALUATION

This section describes the implementation of an external input
device on the RCC method, extending the framework for teleopera-
tion. We also established a benchmark method where commands
are delivered from the external gamepad to the Baxter platform
in a joint-by-joint fashion. In this method, which we refer to as
joint-by-joint (JBJ), the user has more control over the robot and
can eventually reach an pose in the robot’s configuration space,
through sequential input of commands through the input device.
On the other hand, the RCC method is limited to executing the set
of poses that are saved in a database. Four tasks designed to demon-
strate the differences in this performance are, thus, also presented
in this section.

3.1 Implementation of Gamepad Control
The Robot Operating System (ROS) was used to connect the Re-
think Robotics Baxter Robot and the Linux workstation. The ROS
version we use is ROS Kinetic. In this case, the Baxter Robot is
acting as a ROS Master and connected to the Ubuntu Development
Workstation through a Gigabit Ethernet Switch. For the Microsoft
Xbox One gamepad, we use a ROS node called Joy to connect the
gamepad to ROS. For controlling and manipulating the Baxter Ro-
bot, we used several API functions from the Baxter SDK such as
set_joint_position to set and read the joint positions.

For the JBJ method, we change the angle of a single revolute
joint each time. Each analog joystick controls the movements of
the two robot limbs. In this method, we set joystick moving up

for clockwise and down for counter-clockwise. See the left side of
Figure 1 for this mapping to the input device.

We used a distinct mapping to Xbox One controller for the RCC
method (right side of Figure 1). Based on the Laban Movement
Analysis, we obtained a database describing each movement by
the parameters of kinesphere size, plane and joint angle. There are
twenty-seven movements in the database, the high, middle and
low planes each has nine movements. Among the nine movements,
there are forward, backward, left, right, forward left, forward right,
backward left, backward right and the neutral. After we set the plane
by the Xbox One controller, we let each analog joystick control
eight movements except the neutral movement. Every time we get
the command of movement from the Xbox one controller, we would
extract the corresponding data from our database and send them
to the Baxter robot through the rosnode. The Baxter robot would
then set the positions of the joints based on the information we
give. This architecture is illustrated in Figure 2.

3.2 Tasks for Demonstration of the Method
Four tasks were designed to showcase and compare the JBJ and
RCC methods. The tasks utilized in this demonstration can be cate-
gorized, as shown in Table 1, into the following partitions: one-arm
and two-arm and static and dynamic. These tasks provide a breadth
of activity with which to demonstrate the performance of the JBJ
and RCC methods in order to compare the types of tasks where
each method will excel.

One-arm Two-arm
Static Task 1 Task 2
Dynamic Task 3 Task 4

Table 1: Structure of tasks.

In this paper, we define a static task as one characterized by a
postural objective. This means that the task can be completed by
achieving a specific posture with the robot and, thus, the overall
goal of the task is to move one, in a “one-armed” task, or both in a
“two-armed” task, of the limbs of Baxter to a certain configuration.
The first two tasks established fit this criteria, and the first requires
the use of one arm while the second requires the use of two.

For Task 1, the objective is to move the right arm of Baxter
through a hula hoop that is suspended in the air in front of Baxter.
The plane of the hula hoop is perpendicular to the direction that
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Figure 3: The above figure contains eight series of screenshots that demonstrate the trajectory of Baxter’s limbs through the
two versions of the four tasks detailed in this paper. The RCC method extends Baxter’s limbs in much more natural and
familiar ways, and this is especially noticeable in the completion of the first and second tasks. For the RCC methods, the
arms open and extend outwards in a more radial manner, but for JBJ method, the way in which the arms expand is extremely
mechanical and stunted. This trend also arises in tasks three and four. For the joint-by-joint method, Baxter’s arm begins by
extending vertically and then rotating downwards, closer to the target. However, the RCCmethod involves a muchmore fluid
and radial extension of the limbs. Tasks three and four for the JBJ method were the only instances in which the tasks were
not successfully completed.

Baxter’s arm extends in so that the arm just has to stretch forward
to reach through the hula hoop. Task 2 is very similar to, but instead
of having just one hula hoop suspended in the air, there are two.
The overall objective of the task is to reach one arm through the
hula hoop on its respective side, and the other arm through the
other hula hoop.

We characterize a dynamic task as one that has a velocity-based,
or even force-related, objective. That is, such a task cannot be
completed by holding a particular posture; it requires some moving
speed of (transferring momentum to) the object being manipulated.
This type of task was constructed by requiring the operator to use
the platform to strike a primary object to provide it with enough
velocity so that it hits a secondary object.

For Task 3, this involves hitting a balloon that is strung from
the ceiling so that it hits within a large circle that is drawn on a
whiteboard in front of the balloon. Task 4 is again similar to task
three, but there is now the introduction of an intermediary obstacle.
There is now a square flap, a rubber mat, suspended in the air
between the balloon and the whiteboard. This is meant to force the
user to utilize both of Baxter’s arms: one to move the obstacle out
of the way, and the other to hit the balloon into the whiteboard.

Completion (or attempt thereof) of each task by one of the re-
searchers is shown in Figure 3. This researcher was trained in
Laban Space Harmony, was provided the structure of the RCC, and
had implemented the Xbox input device. Through this process, the
researcher had accumulated around 20 hours of experience tele-
operating the Baxter platform in the JBJ and RCC methods. The
performance of the researcher on these distinct tasks is presented
in the next section as an initial evaluation of the proposed method.

Task1 Task2 Task3 Task4
Joint-By-Joint 31.4s 70.6s 99.8s (103s)
RCC 21.2s 42.8s 86.8s 87.8s

Table 2: Task completion time.

4 RESULTS AND ANALYSIS
This section presents the results of typical trials in the lab with
a skilled researcher. These trials were selected as typical in the
best judgement of the research team and are meant as an initial
demonstration of the RCC method compared to a more traditional
teleoperation method (JBJ). The four tasks described in the previous
section (Task 1: static, one-armed; Task 2: static, two-armed; Task 3:
dynamic, one-armed; Task 4: dynamic, two-armed) are presented.

One measure of performance is whether or not the task was com-
pleted. Tasks 1, 2, and 3 were completed successfully by both meth-
ods; Task 4 was only completed successfully by the RCC method. In
previous trials, both methods have been used to complete all four
tasks, but it is extremely tricky to complete the dynamic tasks with
the JBJ method due to the time it takes to create desired movement
through serial commands to each joint actuator.

A second measure of performance is how long the completed
tasks took. It is preferable to see quicker task completion, and in
all four tasks, the RCC method facilitated quicker task completion.
The Table 2 contains the time to completion of the tasks using
both methods. For the trial of Task 4, using JBJ method exceeded a
reasonable time limit and were cut short after about 100 seconds of
effort (the actual times of data recorded are given in Table 2).

In order to further analyze the performance of the two methods,
we also collected the number of joints moving simultaneously for
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both methods. This number was measured empirically using the
encoders at each joint of the Baxter platform. While the JBJ method
can only command motion of one actuator at the same time, the
compliant, series-elastic actuators used in this platform do exhibit
movement when neighboring joints are activated, and this motion
is captured in this analysis.

We measured the motion of all the joints using commands from
the Baxter API and collected data every 0.2 seconds. Due to the
subtle collisions of the actual robot, we set the threshold to detect
motion between a multiplicative factor of 0.9 to 1.1 of the joint’s
prior position in order to capture changes of 90% to 110% of the
position at the previous time step. The total number of jointsmoving
is plotted in Figure 5 andwhich joints weremovingwhen during the
trial is plotted in Figure 6. These plots show the different physical
performance of the robot under the two different methods. Overall,
the RCCmethod facilitatedmore simultaneous action of joint angles.
This is shown in Table 3, which presents the average number of
joints moving during each task.

Task1 Task2 Task3 Task4
Joint-By-Joint 1.1 1.2 1.1 1.0
RCC 2.7 2.6 3.0 3.0

Table 3: Average number of joints active.

4.1 Discussion
Teleoperating Baxter through the four tasks utilizing the two pre-
sented methods highlighted several consistencies as well as innate
benefits. Beginning with Task 1, the main type of movement that
occurred within this task was taking Baxter’s arm from the neutral
pose within the near space out to a region close to the periphery of
the kinesphere. The joint-by-joint method performed this common
task in a very hinge-like way: initially swinging the arm out to the
side of Baxter, like a crane, and then rotating a distal joint until the
limb has broken the plane of the hula hoop. On the other hand, the
RCC method performed this task quite differently.

While both methods begin in the same position, using the RCC
method, the operator immediately unfurls the arm outwards, leav-
ing the arm in a concave-up orientation. From there, the arm then
extends forward, spoking into space, to pass through the hula hoop.
If a human was told to put their arm through a hula hoop from a
similar starting position, it is easy to argue that this would look
much more similar to how the RCC method performed this task.
Similar to how inverse kinematics moves an end-effector to a de-
sired location, the spatial pulls and pre-stored poses allow for the
robotic limb to reach the desired location in a more fluid, natural
way. Similar activity is observed in Task 2 as well since both tasks
require the same movements for success.

Tasks 3 and 4 are especially interesting because for the two prior
tasks, despite the large differences in how the methods performed
the task, they both resulted in successes. However, the JBJ method
succeeded at Task 3, but failed at Task 4 whereas RCC succeeded
at both. In terms of behavior exhibited in these tasks, the best
approach we have found using the JBJ method began by rotating
a proximal joint so that one of the arms was pointing upwards
and as high vertically as it could get. Then, the operator swung
the arm downwards in hopes of striking the balloon with enough

momentum to hit it into the target. The arm would then remain
at the periphery of the kinesphere, attempting to string together
multiple “bobbles” of the balloon so that it would hit the target.

As in the static tasks, using the RCC method, the operator ap-
proached this task in a much different manner: quickly making an
attempt at hitting the balloon, which was possible because of the
RCC’s ability to spoke radially. The operator started Baxter’s arm
within the smaller-sized kinesphere, curled closer to the body of
the robot, and then moved the arm straight outwards towards the
balloon by activating a larger kinesphere size in the same spatial
direction. This resembled a much more head-on attempt, and it was
also much easier to replicate or retry as opposed to the JBJ’s method
of extending the arm vertically and then swinging it downwards
for the sake of initial momentum. The JBJ’s inability to complete
Task 4 was a great point of interest because as the screenshots in
Figure 3 show, there was no problem moving the obstacle, it was
rather that enough speed could not be built up to swing the primary
object into the secondary one.

This description can be seen in the plots in Figures 5 and 6. Now,
the number of joints moving at a given time is graphed, with JBJ
again on the left and RCC on the right.While the graphs may appear
similar, the scaling on the y-axis emphasizes that the RCC allows for
significantly more complex and fluid motion. The JBJ graph really
only operates at two levels: one joint moving, or none moving, with
an occasional instance of two joints moving, potentially while the
user is cycling through joints. However, the RCC method shows a
higher ceiling, peaking at five to six joints moving at a time, but
consistently possessing around two to three joints moving. Thus,
these plots illustrate that RCC provides a vehicle for more fluid
motion characterized by simultaneous action of multiple joints.

5 CONCLUSIONS
In this paper, we introduced a novel method for sending commands
to a teleoperated robot (the RCC method [1]). This method uti-
lizes spatial pulls that originate from the Space category of Laban
Movement Analysis, a system rooted in choreography and dance, to
create movement within a robotic system. Then, we compared this
method to a more common, direct method of moving robotic limbs
via commands specific to a given joint angle (the JBJ method). We
found that when completing the same four tasks, the RCC method
was more successful at the tasks (according to completion and com-
pletion times) and has more joints concurrently moving than the
JBJ method. This suggests that the RCC method facilitates a level
of movement complexity that the JBJ method cannot match.

Qualitative analysis of the completion of these tasks also sup-
ports this concept: the trajectories of the robot’s limbs during the
RCC method demonstrates the ability to move between two distant
points in space in less time than the JBJ method. Moreover, this si-
multaneous cooridination of action tends to look more human-like.
However, the RCC method limits the shapes that can be executed
based on the database driving this method; thus, the JBJ method
offers more precise movement by allowing for more isolated control
over a limb or joint at any given moment as well as the ability to
rotate through a specified joint angle as opposed to moving towards
a more general spatial pull.

The results of this initial validation suggest that the RCC method
can compliment methods employed today, like the JBJ, to improve
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operator control over robotic platforms. This empirical demonstra-
tion is quite limited as it did not recruit a large pool of users. Future
work will develop Laban-training (as in [1]) of users and test the
ability for a wide-variety users to learn the RCC method and op-
erate a Baxter robot with it. Another area of interest for us is how
less experienced users react to the two methods, and whether one
“feels” better than the other in practice using metrics like the NASA
TLX workload measure. Follow on studies will extend this mapping
to other platforms like the SoftBank NAO and Kuka youBot (as in
[1]) and even virtual robots as shown in Figure 4. This work would
further validate the approach and demonstrate the scalability of
the RCC method.

Figure 4: Scalability in teleoperation is especially critical for
a robot such as the one above, which possesses a myriad of
complex limbs and joints. With a method like JBJ, cycling
through each and every DOF would become tedious; how-
ever, the spatial pulls leveraged by the RCCmethod are con-
stant so it can scale to systems such as this.

As an increasing number of increasingly complex robotic bodies
are introduced into the world, there will be a greater demand for
these systems to have variability in their movement to be able to
operate within society with human operators. While a joint-by-
joint method may satisfy requirements for a smaller, more simple
robotic system, this becomes very restrictive in terms of what types
of motion are available. The RCC method offers a greater breadth
of motion, although this motion may not be quite as precise, that
can scale to more complex bodies.
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Figure 5: The graphs in this figure plot the number of joints moving with respect to time, with the JBJ method on the left and
the RCC method on the right, during all four tasks. A general trend through these plots is that the JBJ plots typically range
between zero and one joints moving at any given timewhereas the RCC plots range between zero and six. Task 2 exhibits more
of an uncommon occurrence of three joints moving at once for JBJ, but RCC still far outperforms in terms of the number of
joints moving at a given point in time. Another interesting attribute to note is that the RCC graph very rarely stays at zero
joints moving, and is constantly bouncing off of the “floor” of the graph (no joints moving) whereas the the JBJ graph tends
to stay at zero joints moving for longer time periods than RCC.
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Figure 6: The graphs in this figure plot which specific joints are moving with respect to time, with the JBJ method on the left
and the RCC method on the right, during all four tasks. An important distinction to make is that the JBJ graph resembles a
type of step graph with a horizontal bar either jumping up or down. On the contrary, the RCC graph possesses several joints
moving at one time, denoted by parallel red lines. Also, the horizontal lines of the RCC method are very frequently broken
up into smaller segments. This resembles several little tweaks and adjustments to the motion of the limb as opposed to the
straight, unbroken lines of JBJ which suggest more rigid movement.
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