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Abstract— For achieving significant levels of autonomy,
legged robot behaviors require perceptual awareness of both
the terrain for traversal, as well as structures and objects in
their surroundings for planning, obstacle avoidance, and high-
level decision making. In this work, we present a perception
engine for legged robots that extracts the necessary information
for developing semantic, contextual, and metric awareness of
their surroundings. Our custom sensor configuration consists of
(1) an active depth sensor, (2) two monocular cameras looking
sideways, (3) a passive stereo sensor observing the terrain,
(4) a forward facing active depth camera, and (5) a rotating
3D LIDAR with a large vertical field-of-view (FOV). The
mutual overlap in the sensors’ FOVs allows us to redundantly
detect and track objects of both dynamic and static types.
We fuse class masks generated by a semantic segmentation
model with LIDAR and depth data to accurately identify and
track individual instances of dynamically moving objects. In
parallel, active depth and passive stereo streams of the terrain
are also fused to map the terrain using the on-board GPU. We
evaluate the engine using two different humanoid behaviors, (1)
look-and-step and (2) track-and-follow, on the Boston Dynamics
Atlas.

I. INTRODUCTION

Legged robots boast the ability to perform various be-

haviors that are either impossible or highly challenging

for other robot forms to achieve. Legged robot behaviors

include walking over rough terrain, climbing stairs, opening

doors, moving heavy loads, engaging in co-manipulation

tasks, as well as freestyle athletics. However, achieving high-

level tasks such as those performed routinely by humans,

requires robust and reliable awareness about the surrounding

environment with reasonably high-level understanding of the

world. Humans daily go through an enormous variety of

environments, such as morning hygiene routines, navigating

buildings, driving vehicles, and cooking food. All such

tasks require humans to subconsciously track various objects

and activities in their surroundings, such as, vehicles on

roads, other humans in the environment, open doors, walls,

stairs, etc. However, seemingly effortless tasks performed by

humans can be very challenging to achieve for robots, at least

from the perspective of environmental awareness. Being able

to successfully track objects and events is an essential part

of robot perception, and requires a pipeline for extracting
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Fig. 1: Multi-Sensor Head on Atlas (first-row), combined im-
age from Logitech Brio and D435 color streams (second-row),
combined semantic mask for the image above (third-row), and
screenshot of the track-and-follow behavior user interface (fourth-
row) for both flat-ground (left) and rough terrain (right).

and processing both metric and semantic information from

sensor data.

In this work, we present a semantic-metric method for

perceptual awareness of legged robots in indoor environ-

ments, leveraging a custom designed and highly redundant

multi-sensor head. We develop a system for tracking multiple

semantically meaningful objects in 3D metric space over a

large field-of-view using the novel sensor-head. An overview

of the sensor head on Atlas, sensor fusion, semantic seg-

mentation, and high-level behaviors is shown in Fig. I. We

evaluate the system by performing look-and-step and track-

and-follow behaviors with the Boston Dynamics DRC Atlas,

both while walking on flat-ground and on rough terrain. The

primary contributions of this paper are:

1) Custom and highly redundant sensor-head with three

monocular cameras spanning a large FOV, an active

depth sensor, a rotating LIDAR, and a passive stereo
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Fig. 2: Multi-Sensor Head Configuration with relative transforms and sensor mount positions for side-cameras (Logitech Brio 4K), active
depth camera (Intel RealSense D435), stereo pair (ZED 2), and LIDAR on top (Ouster OS0-128). The on-board computer inside the
casing is a Minisforum H31G MiniPC. The complete sensor head was designed for maximizing effective field-of-view on all sensors.

pair.

2) Fused semantic segmentation of both LIDAR point-

cloud and color images simultaneously from three

camera streams at 8-10 Hz.

3) Three-dimensional Multiple Object Tracking (MOT)

framework to track multiple moving entities over a

large FOV.

4) In our knowledge, the first work on human-following

behavior for bipedal humanoid robots that can follow

humans over both flat-ground and rough terrain envi-

ronments.

II. RELATED WORK

Bipedal humanoid robots have the mobility to traverse

complex terrains and cluttered environments, but require a

higher level of complexity in their perception and planning

systems to achieve this goal. Simultaneously, performing

high-level and meaningful behaviors over rough terrain re-

quires another layer of robustness associated with semantic

understanding of the world. To the best of our knowledge,

we are the first to present a perception engine for achieving

semantically meaningful and high-level behaviors, such as

person-following, for a bipedal humanoid robot while even

moving over rough terrain. Therefore, the related work can

broadly be classified into two main areas: (1) works on

multi-sensor fusion for developing semantic understanding of

the world, and (2) previous approaches to person-following

behavior on legged or humanoid robots.

1) Sensor Fusion for Semantic Understanding: Semantic

scene understanding has been explored by several works in

the past. A theme in a subset of such papers has been to ex-

tract geometric primitives from sensor data as building blocks

before further higher-level processing. The approach taken

by Grotz et al. [8] first extracts geometric primitives such as

planes, cylinders and spheres from RGB-D point-cloud using

the Locally Convex Connected Patches (LCCP) algorithm,

and fuses the geometric primitives spatio-temporally. In par-

allel, color images are used to extract semantic 2D bounding

boxes using the YOLO object detection algorithm, which are

then combined with geometric primitive information spatially

into a scene-graph for inferring higher semantic structures

in the scene. However, learning-based representations of the

input were shown to outperform hand-crafted representations

and policies.

Vora et al. [18] present the work on PointPainting which

obtains class scores using an image-only semantic segmen-

tation network, and then augments the pointcloud with the

score vector. They show that LIDAR-only segmentation

networks can then be applied to the augmented pointcloud

for improved accuracy in 3D segmentation. Although, such

an approach accurately segments the pointcloud, the overall

computational cost grows significantly as it requires two dif-

ferent segmentation networks to be used, and the augmented

pointcloud requires even higher memory usage.

Learning-based methods for extracting 3D objects such as

pedestrians, cars, cyclists, etc. from point clouds and images

have been shown to perform well on the KITTI dataset

(PointRCNN [15], PointNet [13], VoxelNet [21], MV3D [3],

AVOD [9], PIXOR [19], Complex YOLO [16]). Point pillars

were proposed by Lang et al. [10] as an efficient organization

of point cloud for end-to-end extraction of oriented bounding

boxes for objects. SemanticVoxels [5] further generalized the

approach taken by PointPillars for fusing semantic colored

image features and geometric LIDAR features to achieve

superior 3D object detection results on the KITTI dataset.

Madawi et al. [4] also explore 3D semantic segmentation

by fusing both LIDAR scans and color images into a Polar

Grid Map (PGM) tensors. They implement custom network

architectures for fusion of color and depth both before and

after the feature extraction stages of the architecture, using

SqueezeSeg and PointSeg as the baseline models. They

achieve higher accuracy than the baseline models only with

slightly higher computational costs. However, all single-

frame techniques are prone to exhibit false detections which

can lead high-level planners to make incorrect decisions. We

instead leverage Multi-Object Tracking (MOT) [14, 1] to

discard false detections and smooth out the trajectories of

semantic objects over both space and time.

2) Person-Following on Legged and Humanoid Robots:

Following humans safely and robustly is an important task

in the field of Human-Robot Interaction (HRI) and is vital in
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disaster relief and search-and-rescue applications. However,

most human-following frameworks have been either devel-

oped for structured indoor environments or wheeled robots

with limited traversability.

Goldhoorn et al. [6] present experimental results on a

wheeled-humanoid robot following a human target in an ur-

ban setting. They employ two novel methods using Partially

Observable Monte-Carlo Planning (POMCP), with their best-

performing method being a compound algorithm that uses

heuristic path planning when humans are detected, and

Monte Carlo simulations otherwise. Their robot was able

to follow a human for over 3 kilometers over the span of

3 hours, even when the human was not visible. However,

since such methods rely on a finite number of discrete

actions and observations, they are usuallly unsuitable for

high-dimensional systems such as legged humanoid robots

in complex environments.

Zhang et al. [20] present the first person-following frame-

work for quadrupedal locomotion. Their robot uses a LIDAR,

a depth camera, an IMU, and odometry to build a local

traversability-based cost map and find the pose of the tracked

human. This data is fed into their motion planner for the

generation of an initial coarse path, which is then optimized

to minimize time and acceleration under simplified kinody-

namic constraints. They evaluate their algorithm in indoor

and outdoor environments using a JueYing quadrupedal robot

running their module at 10 Hz.

III. SENSOR CONFIGURATION

The front of the sensor head contains three different

cameras as shown in both Fig.I and Fig.2. The depth camera

in the middle (Intel D435) offers a resolution of 640×480

on both color and depth, and faces forward. Additionally,

two monocular 1280 × 720 cameras (Logitech Brio) face

sideways at yaws of +40 and -40 degrees from forward. The

image streams from all the monocular cameras are stitched

together for being used by the human robot operator for

selecting a target to follow and generally interacting with

the perception engine.

The sensor head is equipped with a 360-degree LIDAR

(Ouster OS0-128) consisting of 128 vertical channels and

2048 scan points per channel. This LIDAR generates scans

of the environment at 10 Hz with a maximum range of 120

metres. The LIDAR is primarily used to track semantically

meaningful objects in 3D, and improving the redundancy

of the object tracking system. Other sensor types and ap-

proaches for depth extraction could also have been used,

however, we found the Ouster to be a reasonable solution for

acquiring accurate and long-range depth over a wide FOV.

The head also contains a passive stereo pair (ZED-2)

facing down with a pitch of 20 degrees, used for generating

passive depth maps. The robot also uses active depth from

an Intel RealSense L515 sensor attached to the chest looking

down on the terrain to extract planar regions as simplified

representation of the terrain in front of the legged robot.

We use the GPU algorithm presented by Mishra et al. [11]

to segment the depth into multiple approximately-convex

planar regions. Passive stereo depth is used as a redundancy

for this task of planar region extraction as the height and

surface normal are further constrained for improved footstep

planning.

A dedicated on-board computer (Intel Core i7 8th Gen,

GTX 1050 Ti, 32 GB) was used for both interfacing with

the sensors, and performing perception algorithms on the

incoming data. The on-board computer connects to a 10 Gbps

Ethernet switch on the robot for high-bandwidth transfer of

processed data to all parts of the systems. All sensor frame

rates are time-synchronized relative to the LIDAR update

rate, and therefore, the complete bundle of sensor data is

updated at 10 Hz. Sensor latencies as large as 500 ms were

found to be tolerable for achieving person-following, since

the high-level planner only needs to update at around 2 Hz.

Fig. 3: Fused Semantic Segmentation and Instance Clustering for
Multiple Human Class Objects in the Scene.

1) Calibration and Internal Parameters: Once the hard-

ware for the sensor head was assembled and the on-board

computer setup with necessary sensor drivers, calibration

routines were performed to extract the following parameters

for all 5 cameras on the head (illustrated in Fig.2): the

4× 4 camera intrinsic parameter matrix Msensor, the 3× 3

homography matrix Hsensor from the sensor image plane ΩC

to the base image plane ΩB, and the 4× 4 homogeneous

rigid-body transform Tsensor from camera frame RC to the

base frame RB. Camera intrinsic and extrinsic parameters

were calculated using Zhang’s method [2], and used to

generate the pinhole model for projecting LIDAR 3D points

onto all the cameras as,


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u
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





, (1)

where fx, fy, cx, and cy are focal lengths and centers of

projection along x and y axes.

2) Warping and Image Fusion: We then calculate the

homographies Hsensor between various cameras and base

image plane (D435), using ORB feature correspondences
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(ZED 2 and Logitech Brio cams) and warp the non-base

images onto the base image plane using,




xλ
yλ
λ



=





h11 h12 h13

h21 h22 h23

h31 h32 h33









u

v

1





, (2)

and obtain the final stitched image β (x,y) to be used

for robot operator interfacing. The rigid-body transforms

between different sensor-pairs were obtained by combining

information from the CAD model of complete sensor-head,

sensor technical drawings provided by their manufacturers,

as well as manual measurements after the physical assembly

of the sensor-head.

IV. APPROACH

The perception engine detects and tracks semantic entities

in the environment and uses them for informing high-

level robot behaviors, such as building exploration, person

following, manipulation, and other forms of physical inter-

action. The pipeline first attempts to detect all semantically

meaningful objects and structures in the environment using

a semantic segmentation model on the combined image

stream from the multi-camera system on the sensor head.

The generated semantic mask with class labeled pixels is then

used to segment the LIDAR pointcloud. The pointcloud is

first split into blobs belonging to different classes, which are

then further separated into smaller pointclouds representing

the various instances of each semantic class. The instance-

separated pointclouds are further used for tracking object

instances over time and providing goal locations to high-

level behaviors such as the person-following behavior.

A. Semantic Segmentation of Images

Semantic segmentation is used to generate class-wise

masks for classifying and segmenting various objects ob-

served in the color images as shown in Fig.3. Particularly,

we employ a RefineNet with a ResNet-101 backbone [17]

which enables us to achieve real-time semantic image seg-

mentation. The model was trained first on the combined

COCO+BSD+VOC datasets, and then trained further on the

ADE20K dataset for 90 epochs with learning rate decrements

after every 30 epochs. A subset of ADE20k containing

indoor classes was selected and augmented with operations

such as randomized mirroring, cropping, downsampling, and

upsampling along with padding.

The training dataset consisted of 20,210 training images,

2,000 validation images, and 3,000 testing images. More

information about the classes that were included in training

is available in Table I. The percentage of instances and pixels

are both values obtained from the ground-truth masks in the

training and validation data sets, and the IOU scores were

obtained as the highest mean IOU score across all classes.

B. Terrain Mapping

Legged robots specifically need fast and reliable system

for terrain surface extraction to generate feasible footstep

plans for locomotion. We use an active depth sensor to ex-

tract the terrain surface in form of polygonal planar regions.

TABLE I: Top 10 classes from the training dataset used along with
evaluation metrics

ID Name Frequency [%] Pixels [%] IOU

0 Void 66.09 32.75 0.577

1 Wall 6.81 29.70 0.669

2 Floor 5.44 11.21 0.715

3 Ceiling 3.84 7.63 0.692

4 Window 2.73 3.48 0.451

5 Cabinet 1.68 3.92 0.452

6 Person 2.97 2.28 0.676

7 Door 3.96 1.91 0.224

8 Table 2.48 2.32 0.348

9 Curtain 1.25 2.16 0.596

10 Chair 1.90 2.14 0.417

The look-and-step behavior on the robot is responsible for

planning a sequence of feasible footholds for the robot to

step on using the most recent set of planar regions. We use

our GPU-accelerated algorithm for planar region extraction,

which segments the depth map into planar regions by divid-

ing the depth into patches of pixels and then grouping nearby

patches with similar surface normals into polygonal regions

[11].

C. Point-Cloud Classification and Instance Clustering

For object instance extraction, the pointcloud X is broken

down into disjoint semantic subsets xc for the different

semantic classes c∈ (human,chair, table,doors, ...). We label

3D points Xi by projecting them onto the image plane of a

colored camera which overlaps in FOV with the LIDAR,

and obtain the semantic class from the segmentation mask

for the projected 2D coordinates (ui,vi). All points belonging

to a particular semantic class are then collected into a single

cluster xc. The cluster is then further divided up into separate

clouds for each specific instance of the class. The instance-

specific cloud xc
i or instance cloud is then used as the final

representation of objects in the environment. The centroids of

these instance clouds are then fed into the Multiple Object

Tracker (MOT) running on a separate thread. The specific

MOT track selected by the robot operator is then used as the

final target trajectory for the person-following behavior. Due

to noise and errors in the process of instance-wise clustering,

the instance cloud does not always contain points evenly

distributed throughout the object. This necessitated the need

for tracking position of object instances over time.

D. Tracking Dynamic Object Types

Robust and reliable awareness of objects in the surround-

ings requires tracking object instances through time and

space. The pipeline up to this point simply generates three-

dimensional detections of object instances at every camera

frame. Since every sensor frame of data is independent of the

previous frame, a mechanism to maintain state or memory

of various instances becomes necessary.

The MOT framework first calculates Histrogram of Ori-

ented Gradients (HOG) representation of the most recent

detections and caches them. The HOG feature vectors for

the latest detections are then matched with those of existing
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Fig. 4: The process of Multiple-Object Tracking (MOT) in which
new detections are fused with their corresponding tracks after
matching. In this process, an affinity metric is calculated between
all detections and tracks, and used to decide if a detection can be
matched to an existing track. Unmatched tracks are discarded after
N frames if they cannot be matched to existing tracks.

tracks as shown in Fig. 4 by calculating the Hellinger

distance as the affinity between them as,

d(H1,H2) =

√

1−
1

H̄1 ∗ H̄2 ∗N2
∗∑

J

√

H1(J)∗H2(J) (3)

where,

H̄k =
1

N
∗∑

I

Hk(I) (4)

and N is the total number of bins in the histogram [12]. The

framework further employs thresholds the Intersection-over-

Union (IoU) of the semantic masks of consecutive detections

of objects to ensure that tracks are correctly matched to

detections.

For every track, an instance of a Kalman Filter is used

to smooth the trajectory of any particular object instance

over time. For high-level behaviors such as following an

object, the object instance can be represented as simply a

point moving through space in 3D.

Often, due to imperfections in identifying corresponding

instances over multiple frames, the pipeline loses track of

previously seen objects or regains track of lost objects. We

discard unmatched tracks only after no new detections were

matched with them for longer than U = 20 frames. However,

unmatched detections give rise to newly spawned tracks and

are included in the list of all tracks. This list of tracks can

then be used by human operator to choose which object

to follow by clicking on the stitched-image semantic mask

displayed on the user-interface. As long as target objects

remain at least 0.5 m away from each other, the engine is

able to distinguish the different instances apart. As a result,

detections were seldom observed to be incorrectly matched

to tracks in practice.

E. Humanoid Robot Behaviors

For evaluating the semantic-metric perception engine, we

chose a person-following behavior that was tasked with

dynamically tracking and following a moving person over

rough terrain. De-coupling the task of locomotion from that

of target-following, we divided the overall task into two

simpler behaviors named look-and-step and track-and-follow.

1) Look-and-Step Behavior: The look-and-step was de-

signed as a low-level behavior that was responsible only

for using the most recent local map of the terrain to plan

a sequence of footsteps and walk to a pre-defined goal pose.

The behavior depended on the GPU-based planar region

extraction algorithm [11] and our A*-based footstep planner

[7] to walk to the goal pose, one step at a time. The design

for this behavior enabled the robot to autonomously walk

both forward and backward, depending on where the goal

pose was defined. Locomotion on rough-terrain could also

be achieved within the same behavior design as the A*-

based footstep planner was able to accommodate for footstep

position, altitude, yaw, as well as partial footholds.

2) Track-and-Follow Behavior: This behavior was re-

sponsible for obtaining the target position from the per-

ception engine and defining the goal pose input for the

look-and-step behavior. The architecture of the track-and-

follow behavior was designed to be high-level to abstract

out the robot-specific tasks such as planning, control and

perception. The look-and-step was used by the track-and-

follow behavior as a low-level utility function. Although the

perception engine is capable of acquiring target positions

at 10 Hz, the track-and-follow was intentionally restricted

from outputting a goal pose to the look-and-step behavior at

up to 2 Hz for allowing the footstep planner and controller

time to achieve the previous goal state. The planar goal pose

(x,y,z,φ) (where φ is yaw) was calculated as the pose 2

m away from the target along the line from target to robot,

facing the target. The distance of 2 m was mainly chosen as

a balance between human safety and lab dimensions.

V. EXPERIMENTS AND RESULTS

We conducted several experiments with Atlas perform-

ing the track-and-follow and look-and-step behaviors while

following human target around the lab, as shown in Fig.5.

In all experiments, both the human target and Atlas were

tagged with a motion-capture marker rigid-body on the right

shoulder. In the first two trials, the terrain was flat-ground,

but an unstructured field of cinder blocks in the third trial. We

observed that using a leg kinematics based state-estimator as

the primary source of localization for the robot was sufficient

Fig. 5: Human target and Atlas while performing Track-and-Follow
Behavior on flat-ground (top-row) and rough terrain (bottom-row).
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Fig. 6: Motion Capture trajectories for human target and Atlas while performing Track-and-Follow Behavior. Each column represents a
different experiment. The first two columns were obtained on flat-ground, and the last column on rough terrain.

to achieve person following, removing the need for global

localization. The motion-capture system was only used to

calculate the person-to-robot relative error in positioning.

A. Following Target on Flat-Ground

The first experiment was for Atlas to follow a single

person on flat-ground. A single person was tasked with

moving in a figure-eight loop trajectory with a circular loop

diameter of about 4 meters. A safe distance of 2 m was

used as an offset between the person and the robot. The

trajectories in Fig. 6 show that Atlas performed better at

maintaining the offset along the X-axis of the motion-capture

reference frame, than on the Z-axis. This was mainly due to

the fact that our robotics lab is significantly longer along

X-axis, but limited in width along Z-axis.

B. Following Target on Rough Terrain

For evaluating the robustness of the behavior, Atlas was

challenged with following the target on rough terrain. Since

the track-and-follow behavior was designed such that the

tasks of walking and following are decoupled, the rough

terrain was traversed with very slightly worse accuracy in

person-following, shown on the last column in Fig. 6. We

calculated the Absolute Displacement Error (ADE) along X

and Z axes for all the trials, given in Table II, as,

ADEx =
1

N

N

∑
t=0

|Xatlas(t)−Xtarget(t)|. (5)

The ADE value of around 2 m along X-axis was consistent

with both the safety distance offset 2 m, as desired, and the

TABLE II: The Absolute Displacement Error (ADE) along X and
Y axes.

Trial X-axis ADE (m) Y-axis ADE (m)

1 2.194 0.104

2 2.128 0.290

3 2.025 0.621

fact that the line joining the target and robot was along the

X-axis for majority of the time due to the lab dimensions.

VI. CONCLUSION

Throughout our experiments, we were keen on gathering

observations regarding some of the limitations and possible

extensions to our work. Although our perception engine

is capable of dynamically tracking semantically meaningful

objects over time and space, it does not maintain a complete

map of the world. A probabilistic graph-based mapping back-

end could be used to use the semantic landmarks for Simulta-

neous Localization and Mapping (SLAM) using higher-level

semantic features, rather than low-level geometric features.

Furthermore, such a semantic-metric understanding of the

world could be extended to guide active planning algorithms

for enabling robots for making semantically optimal deci-

sions. We would also like to explore passive stereo further for

terrain measurements and semantic object depth estimation,

as active depth tends to deteriorate in presense of infrared

sources such as sunlight and motion-capture systems.
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