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Abstract—In some applications, operators may want to
create fluid, human-like motion on a remotely-operated robot,
for example, a device used for remote telepresence. This paper
examines two methods of controlling the pose of a Baxter
robot via an Xbox One controller. The first method is a joint-
by-joint (JBJ) method in which one joint of each limb is
specified in sequence. The second method of control, named
Robot Choreography Center (RCC), utilizes choreographic
abstractions in order to simultaneously move multiple joints of
the limb of the robot in a predictable manner. Thirty-eight users
were asked to perform four tasks with each method. Success
rate and duration of successfully completed tasks were used
to analyze the performances of the participants. Analysis of
the preferences of the users found that the joint-by-joint (JBJ)
method was considered to be more precise, easier to use, safer,
and more articulate, while the choreography-inspired (RCC)
method of control was perceived as faster, more fluid, and
more expressive. Moreover, performance data found that while
both methods of control were over 80% successful for the two
static tasks, the RCC method was an average of 11.85% more
successful for the two more difficult, dynamic tasks. Future
work will leverage this framework to investigate ideas of fluidity,
expressivity, and human-likeness in robotic motion through
online user studies with larger participant pools.

I. INTRODUCTION

Robot operation in dynamic environments requires that a
human can communicate complex movement designs to a
robot. In particular, many tasks can leverage surface contact
with a particular shape of robot arm, such as folding a
large piece of paper, using proximal joint linkages to hold
wide swaths of paper in place before creasing. Additionally,
the expression of the robot and the relationship between
the operator, robot, and any humans in the vicinity of
the platform are valuable aspects of teleoperation. To this
end, we suggest that rapid joint-space control for robots
may offer increased flexibility in dynamic environments,
including applications where the specific shape of the robot
arm offers greater functionality for task completion, and
more success in human-facing environments where a human-
like, fluid quality to the robot motion may be desired.

Teleoperation presents various challenges for human op-
erators, including remote perception and manipulation [1].
Determining the best way to transfer user input to robotic
output given a set of constraints is something that demands
attention and researchers are investigating several methods of
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controlling a robot, including traditional joystick, body part
tracking [2], and whole-body teleoperation [3].

Articulated surgical robots such as the Zeus and the da
Vinci are guided by a surgeon via remote control that
translates the hand movements of the surgeon to the end-
effector [4]. If given a specific end-effector position, inverse
kinematics (IK) may be used to determine the joint angles
for the robot. This analytical problem is well studied and
several numerical solvers exists for IK [5], [6], [7]. However,
if used by itself, IK may present singularities in which a
specific end-effector position may be reached with various
joint angles. Thus, the corresponding joint angles for a
specific position may be difficult to find [8]. Furthermore,
the greater the number of degrees of freedom of the robot,
the more computationally expensive IK becomes [9].

Moreover, innovative interface techniques have improved
performance, e.g., a “point-and-click” interface that gives
users better situational awareness [10]. Gesture-based in-
terfaces have also been proposed [11]. For teleoperated
articulated robots with pose specification available, such as
the PackBot, commands are usually created in a joint-angle-
by-joint-angle fashion, which is often labor intensive and
results in low command frequency [12].

Robot motion generation may also focus on the ability for
the framework to produce engaging, variable motion. This
is often done by developing a library of poses that define
the position of the robot in either two-dimensional or three-
dimensional space. One such example of pose control is
shown in [13], where a motion library is used to develop a de-
sired trajectory of a quadrotor while an additional adaptation
algorithm corrects the path within its desired accuracy. This
consideration has been discussed in telepresence, where the
way the artificial body looks and moves affects the perception
of the remote human [14].

Thus, we differentiate between end-effector and joint-
space control for mobile and articulated robots and have
chosen to focus on joint-space control for articulated robots
with the goal of having human-like motion that improves
performance on complex, dynamic tasks. Specifically, we
present a comparison between a joint-angle-by-joint-angle
(JBJ) method and a choreography-inspired method named
Robot Choreography Center (RCC) of controlling an artic-
ulated robot to complete one-arm and two-arm static and
dynamic tasks. Performance metrics such as rate of success
and duration of task are compared with preference scores.

The rest of the paper is structured as follows: Section II
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reviews the high-level, embodied ideas about motion that
inspire this work, Section III discusses the procedure for the
user studies, and Section IV presents the performance and
preference data comparing the methods used to control the
robot. Finally, Section VI concludes the presentation of work
and proposes future directions.

II. DEVELOPMENT OF HUMAN-LIKE MOVEMENT
TELEOPERATION SCHEME

Prior work developed a motion specification scheme that
showed promise for creating human-like motion across mul-
tiple platforms [15]. That method was then extended into a
teleoperation scheme and tested against a benchmark method
on a single user across four tasks in [16]. This paper will
extend the analysis of the two methods, reviewed in this
section, to a pool of in-lab participants. This section will
also introduce concepts from the Laban/Bartenieff Movement
System (LBMS) used in this work and to train participants.

The LBMS taxonomyintroduces the concept of high-level
commands. Despite each human body being a unique plat-
form of varying geometries and force outputs, dancers are
often asked to perform the same movements in unison —
and are seemingly successful at this task. This requires a
movement idea or abstraction with flexible bodily execution
rather than a prescribed joint angle. Through the right set
of compromises, thought of as choreographic abstractions,
dancers seem like they are doing the same thing when on-
stage. The method presented leverages this idea as operators
of robots may be thought of as trying to synchronize an
internal model of motion with the device they are operating.

A. Space-Body Maps Developed from LBMS

The Space component of LBMS describes the spatial
orientation of a motion, or where a movement takes place.
Rudolph Laban developed movement scales to create an
understanding of balance in motion [17]. Similar to musical
scales played by musicians, these movement scales involve
a series of complex, but related movements that span the
space of typically used spatial pulls (in dance) or notes (in
music). These scales are in LBMS as referential points to
understand and characterize movement [18], [19], [20], [21]
and are used to “install” new platforms into the RCC system
[15] and index pose commands [16]. In this paper, they are
used to train participants for the teleoperation method.

Four distinct categories of kinesphere sizes were intro-
duced to the participants of this study: near-reach, middle-
reach, far-reach, and further-reach. The near-reach kine-
sphere is defined for movements that are close to or touching
the body. Middle-reach spans the region between near-reach
and the arm being fully extended. Some examples of a task
performed in middle reach would be typing on a computer
or taking notes. Far-reach is the kinesphere that correlates
to the arm being fully extended, while further-reach requires
whole-body translation to occupy the desired space. All four
of these kinesphere sizes were introduced to the participants;
however, only near-reach, middle-reach, and far-reach were
utilized (given that the Baxter platform cannot locomote).

In addition to the concept of kinesphere sizes, this work
also utilizes spatial pulls, which exist within any given
kinesphere and are comprised of both plane and direction.
Within each kinesphere, three longitudinal planes exist: high
plane, middle plane, and low plane. Within a single plane,
eight spatial directions can be specified: forward, backward,
right, left, and the diagonal directions in between.

B. Description of Teleoperation Methods

This section describes a novel teleoperation scheme under
development (RCC) based on ideas outlined in the prior
section, as well as a method used as a benchmark based
on current PackBot controllers used by the military (JBJ).
The mappings between motion concepts and buttons on the
Xbox One controller for each method are provided in Fig.
1. Both methods are also described and utilized in [16].

1) Description of JBJ Method: The JBJ method is used
as a benchmark method where commands are delivered to
individual joints in a sequential fashion. This allows the user
more precise control over the shape of the robot, not just the
the position of the end-effector. This method allows for the
command of a single joint at a time and averages about one
joint moving at a time in the tasks developed in [16] and
described in the next section. In this method, the desired pose
can eventually be reached through the sequential input of
each parameter, with the movement of the robot in between
each command aiding in construction of these commands.

2) Description of RCC Method: RCC implements both
the kinesphere sizes and spatial pulls outlined in the prior
section to construct its movement commands, using them
as areas towards which a body part should move, including
relative degree or amount of motion, allowing for full body
articulation without requiring specific input for each joint.
This multi-joint actuation provides more fluid movements,
especially as multiple poses are rapidly sequenced together.
This method averages about three joints moving at a time in
the tasks developed in [16] and described in the next section.
This is implemented via a database of stored poses that the
user is indexes with the gamepad controls; thus, not every
pose in the robot configuration space is accessible.

C. System Implementation

As described in [16], the Robot Operating System (ROS)
was used to connect the Baxter platform to the Linux
workstation via ROS Kinetic. This system of control allows
the user to input the commands themselves as well as receive
almost immediate visual feedback as to how the robot is
moving. The Baxter Robot acted as the ROS Master and
connected to the Ubuntu Development Workstation through
an ethernet switch. The Microsoft Xbox One gamepad used
a ROS node to connect the gamepad to ROS. Chosen for
its robust design and commercial availability, the Xbox One
gamepad provided the necessary controls for participants to
experience commanding the robot with two separate mental
models without developing a new input system, which may
be the subject of future work. In order to control and
manipulate the Baxter Robot, several API functions from
the Baxter SDK were used.
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Fig. 1: Description of controls and corresponding visual of
the Baxter robot for a) JBJ and b) RCC methods. The left and
right bumpers toggle through joint options for both methods
and the joysticks correspond to the direction of movement.
The directional pad indicated by the yellow line specifies
the plane while the face buttons indicated by the pink line
provide the kinesphere size of the movement command.
Embodied lessons were provided by the researcher to show
how these commands would map to the user’s body before
robot operation and attempting the teleoperation tasks.

III. EXPERIMENTAL DESIGN

To evaluate the performance advantages of each method
and to understand preferences of users for each of the
methods of controlling the robot, a user study was conducted.

A. Movement Training

JBJ and RCC were randomly assigned ‘“Method 17 and
“Method 2” for each participant so that no information about
the method could be inferred from the name. Seventeen
participants were given the JBJ method as Method 1 and
twenty-one participants were given the RCC method as
Method 1. Participants began the study with a short embodied
training on the concepts related to each method. For the
JBJ method, this involved completing tasks such as touching
the left hand to the left shoulder or putting a hand on
a hip by moving a single joint at a time. For RCC, the
relevant concepts discussed in Section II-A were explained.
Participants were asked to move in each kinesphere and
explore the spatial pulls of the Space category of LBMS.
Participants were then shown how the method was mapped
onto the gamepad. After the movement training, participants
had to pass a verbal test to prove that they understood the
concepts of the method to move on to controlling the robot.

B. Teleoperation Tasks

The four tasks that were designed in previous work [16]
were used in order to compare the JBJ and RCC methods.
Each task was categorized as either a one-arm or two-arm
task, as well as a static or dynamic task. These tasks provided
a range of activity with which the performance of the JBJ
and RCC methods could be tested in order to compare the
types of tasks in which each method would excel. In this
work, static tasks are characterized by a postural objective,
meaning that achieving a particular configuration with the
robot satisfies the task requirements. Meanwhile, a dynamic
task requires movement and momentum in order to achieve a
desired effect. Task 1 was static and required only one arm
to complete; Task 2 was static and required both arms to
move; Task 3 was dynamic and required only one arm; and
Task 4 was dynamic and required two arms to complete.

The participant was given four training tasks so that the
they would have time to grow accustomed to the method
of controlling the robot via a gamepad. Users were given
a maximum of five minutes to complete each training task.
Once the user completed the training task or five minutes had
passed, the robot was reset and the participant moved onto
the next training task. After completing the training tasks,
the participant was asked to fill out a post-training survey
for the method. The participants then moved onto the actual
tasks, where the performance of the user was evaluated for a
monetary value. Three minutes was given for each of these
tasks. The laboratory setup for each task is shown in Fig. 2.

Task 1 involved moving the right arm of the robot into a
23.5” diameter hula hoop hanging from the ceiling in front
of the robot. The bottom of the hula hoop was taped to the
floor to promote stability. Task 2 required that both the right
and left arms of the robot be moved into 23.5” hula hoops
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Fig. 2: The initial setup of each task in the user study conducted: left — Task 1 and Task 2; middle — Task 3; right — Task 4.

hanging from the ceiling. For each of these tasks, the user
was told not to touch the hula hoop with the arm of the robot.
If the hula hoop was touched three times or it was detached
from the ground, the robot was reset and the participant was
given one additional attempt to complete the task.

Task 3 required the participant to move either arm of
the robot such that it struck a balloon of 6.5” diameter
hanging 42.5” from the ceiling into a 27" diameter circle
on a whiteboard placed in front of the robot. Due to the
length of the string and distance of the balloon from the
whiteboard, a transfer of momentum between the arm of the
robot and the balloon was required. Task 4 added a barrier in
front of the balloon that first had to be moved before hitting
the balloon. In both dynamic tasks, the user could not change
the orientation of the balloon or touch the string.

C. Incentive Structure

Participants were provided a base compensation of roughly
$15 per hour ($30 for a study that took approximately 2
hours to complete). If the participant completed the task,
he or she earned an additional $5. For Task 2 and Task 4,
waypoints were identified (placing one arm in a hula hoop
and moving the obstacle to the side, respectively) such that
the participant could earn $2.50 if he or she was able to
complete the waypoint, but not the entire task within the
three minute period. A discussion of successful methods of
approach for each task is provided in [16].

D. Hypotheses About Performance and Perception

Based on the experience of the research team in using
each method, we hypothesized that the JBJ method would not
perform as well on Task 3 and Task 4. We knew that learning
to use both methods successfully would take time. Therefore,
we hypothesized that the 2 hour study structure would
provide enough time to learn both the more straightforward
JBJ method as well as the RCC method. Additionally, we
hypothesized that participants would judge the JBJ method
to be more precise and the RCC method to be more fluid, a
term more often associated with natural, human motion than
artificial, robot motion. The questionnaire detailed in the next
section was developed to test whether or not the hypothesis
about perception of the two methods would be correct.

E. Questionnaire Design

After each task, the participant was asked to fill out a
survey containing a NASA TLX questionnaire [22], [23],

which rates six different categories — mental demand, physi-
cal demand, pace, success, amount of effort, and insecurity or
discouragement — on a scale from 0 to 20. Once the final task
was finished, the user completed a post-method survey and
then moved onto embodied movement training for Method 2.
The training tasks, tasks, and surveys were then repeated for
the opposite method. Once both methods were completed, the
participant answered an exit survey asking for demographic
information such as age, gender, educational and movement
backgrounds, and familiarity with the Xbox One controller.
Additionally, the following thirteen questions were asked:
1) Which method was faster?
2) Which method was more precise?
3) Which method produced more fluid movements?
4) Which method was easier to use?
5) Which method felt safer?
6) Which method felt more expressive?
7) Which method felt more articulate?
8) Which method did you feel a more embodied connec-
tion to the robot?
9) Which method did you prefer for Task 1?
10) Which method did you prefer for Task 2?
11) Which method did you prefer for Task 3?
12) Which method did you prefer for Task 4?
13) Which method would you prefer for future tasks?

IV. USER STUDY RESULTS

Thirty-eight participants (9 females and 29 males) from the
University of Illinois were recruited through fliers. The ages
of the participants ranged from 19 to 34 with an average
of 22.9 and a standard deviation of 3.7 years. While two
participants had educational backgrounds in business and
psychology, the rest of the participants were from STEM
fields such as computer science, chemistry, biology, physics,
and engineering. Thirty-six out of thirty-eight participants
responded that they had engaged in sports such as soccer,
swimming, and running throughout their lives; however,
nineteen out of thirty-eight participants also answered that
they had no specific movement training. Other participants
listed movement practices such as yoga, dance, and martial
arts. None of the participants were familiar with LBMS.

A. Performance Measures

The first measure of performance is task completion. Fig.
3a shows the success rate of the pool of participants for
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each of the four tasks and Fig. 3b shows the distribution
of compensation over the entire pool. While Task 1 and
Task 2 were completed by over 80% of participants for both
methods, Task 3 and Task 4 were more difficult for users,
with RCC being more successful for dynamic tasks. One user
was able to complete all tasks for both methods; however,
no other participant achieved this level of performance and
those who were able to complete the dynamic tasks were
more likely to do so with the RCC method.

The second measure used to evaluate performance is the
amount of time that was required to complete the task. The
requirement was to complete each task within three minutes,
but we consider it preferable to see quicker task completion.
The average duration of successful tasks is shown in Fig. 3a.
The speed at which a task was completed demonstrated the
strengths and limitations of each method. Although Fig. 3a
shows that the JBJ method had a lower average task duration
for Task 3, it is important to note that only two users were
able to complete Task 3 with the JBJ method while eight
were able to complete the task with the RCC method.

This analysis demonstrates the strengths and weaknesses
for each of the methods of control. While JBJ is shown to be
mildly more effective with static tasks, it is also shown to be
slower and less successful for dynamics tasks such as Task
3 and Task 4. Additionally, RCC is more useful for dynamic
tasks in which the movement of several joints must happen
quickly. This is shown by the success rates of Task 3 and
Task 4. Although RCC is shown to be slightly less effective
at static tasks, user performance on Task 1 indicates that the
RCC method is still a viable method of control for tasks
requiring a particular end-position configuration.

B. Perception and Preference Measures

In addition to quantitative performance metrics, the aver-
age self-reported NASA TLX scores provided by the partic-
ipants demonstrated that there was no statistically significant
difference between the average scores for the two methods,
except in the level of success and perceived amount of effort
required for Task 2. Participants rated themselves 21.05%
more successful with the JBJ method for Task 2 and rated the
amount of effort required for Task 2 using the RCC method
to be 13.56% greater than that needed when using the JBJ
method. This aligns with the data provided in Fig.3a, since
the JBJ method was shown to have a higher success rate for
Task 2, as well as the JBJ method taking approximately 20
seconds less to complete Task 2 than the RCC method.

Fig. 3c depicts participant responses to the questions listed
in Section III-E. Furthermore, the orange shaded area rep-
resents a confidence interval of 95%, which was calculated
using the following equation: s

Tt 7 N (1)
where 7 is the mean of the data, Z is the value from the stan-
dard normal distribution (1.96) for a 95% confidence level, s
is the standard deviation, and N is the pool size. If columns
extend either above or below the confidence interval, then
they can be considered statistically significant. Therefore,

users found the JBJ method to be more precise, easier to
use, safer, and more articulate while the RCC method was
viewed as faster, more fluid, and more expressive.

C. Preferences of Users With Similar Performance Levels

These preferences were then categorized by level of per-
formance: 25" percentile and below, between 25" percentile
and 75" percentile, and 75" percentile and above. Fig. 3
shows several cases in which preference varies with perfor-
mance. Overall, Fig.3c depicts a trend that lower bracket
performers preferred the JBJ method, particularly regarding
Questions 9-13. Furthermore, it demonstrates an increased
preference for RCC within the top performance bracket.

D. Qualitative Comments

Additional comments comparing the two methods of con-
trol and providing additional feedback further supported the
hypotheses of this experiment. Users wrote that the joint-
by-joint (JBJ) method “requires [that the motion] be broken
down into more steps” and is “rigid and well-defined”,
giving it a “less steep learning curve”, but also “[requiring]
more cycling through the joints” and making it “difficult
to achieve complex tasks”. Meanwhile, the choreography-
inspired (RCC) method was viewed as ‘“harder to learn”
because it is a “whole process”, but “[that it] could be more
powerful in the long run since it allows for [coordination]
between multiple joints”. Additionally, users wrote that this
method “is more natural and comparable to the way humans
move”. While some users struggled to understand the con-
cepts of the LBMS in such a short time and thought that
the controls felt unpredictable, they asserted that the method
“grew to feel more comfortable” and that more training with
the method would result in “intuitive and easy control”.

V. DISCUSSION

Thus, teleoperating the Baxter robot via the two methods
presented in this paper highlight consistencies in our original
hypotheses, as well as the advantages and disadvantages of
each method. The two methods were compared by attempting
the same four tasks. The quantitative results of this compar-
ison demonstrated that the JBJ method was slightly more
reliable and quicker for static tasks such as Task 1 and Task
2, while Task 3 and Task 4 confirmed the superiority of the
RCC method with regard to dynamic tasks.

Fewer participants were able to successfully complete Task
3 and Task 4; however, the dynamic tasks were designed to
be more difficult. The stark difference between the success
rates of static and dynamic tasks is most likely due to
lack of training time for the more difficult tasks. Due to
the limited time, some participants were unable to explore
various strategies and develop a successful motion path. In
the future, we suggest a greater amount of training — both
with the robot and the LBMS taxonomy — be provided.

Meanwhile, subjective preference data was collected us-
ing a thirteen-question survey comparing the two methods,
affirming that the JBJ method is more precise, easier to use,
safer, and more articulate while the RCC method is faster,
more fluid, and more expressive.
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Fig. 3: Measures of method performance. a) displays the success rates and average durations of successfully completed tasks
for both JBJ and RCC. b) presents the normal distribution and histogram of the performances of the users, illustrating the
performance brackets used in c). ¢) depicts a comparative evaluation of the joint-by-joint (JBJ) and Laban-inspired (RCC)
methods by the participants of the study. The questions on the x-axis refer to those listed in Section III-E. The overall average
is shown in green while the performance brackets correspond to those shown in b). The orange shaded area represents a
95% confidence interval. Therefore, any column existing above or below the bar can be considered statistically significant.

VI. CONCLUSION

In this paper, we have presented a performance evalua-
tion of a novel choreography-inspired teleoperation scheme
(RCC), comparing it against a more traditional approach
(JBJ). The RCC method utilizes movement commands re-
lating choreographic abstractions from the Laban/Bartenieff
Movement System. This system is rooted in the ability of
humans to express high-level movement commands with one
another such that a group of unique platforms might perform
the same movement in unison. Thus, these concepts hold
promise for helping to generate human-like artificial motion.

This teleoperation method may be well-suited to supple-
ment existing methods in dynamic environments in which
rapid, improvised, full-body actions may be required, in-
cluding telepresence within the office, disaster response, or
space exploration. For example, this scheme could be a new
“mode” of operation for a device like the PackBot, utilized
by soldiers and first-responders for telepresent activities.

Future work may include analysis of participant back-
ground in larger pools to examine correlations between

success and prior experience with dance, LBMS, and video
games. Additionally, future work may implement input
modalities and a system in which this method can be used
alongside more traditional teleoperation methods that offer
situational awareness and connection to environmental fea-
tures. If users are able to toggle between multiple methods,
it is likely that even better outcomes will be achieved.

Additionally, we are interested in examining the connec-
tion between the RCC method and qualitative descriptions of
movement such as “human-like” and “natural” that partici-
pants used when describing the method as described in [24].
A better understanding of the properties necessary in deem-
ing a motion “natural” will help inspire the development
of more expressive robots. Future extensions of the work
presented here may further expand the bottleneck between
user intent and robot behavior, creating richer interfaces
between humans and robots.
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