
Dynamic Gap: Formal Guarantees for Safe Gap-based Navigation in
Dynamic Environments

Max Asselmeier1, Ye Zhao1 and Patricio A. Vela2

Abstract— This paper extends the family of gap-based local
planners to unknown dynamic environments through generat-
ing provable collision-free properties for hierarchical navigation
systems. Existing perception-informed local planners that op-
erate in dynamic environments rely on emergent or empirical
robustness for collision avoidance as opposed to providing
formal guarantees for safety. In addition to this, the obstacle
tracking that is performed in these existent planners is often
achieved with respect to a global inertial frame, subjecting
such tracking estimates to transformation errors from odometry
drift. The proposed local planner, called dynamic gap, shifts the
tracking paradigm to modeling how the free space, represented
as gaps, evolves over time. Gap crossing and closing conditions
are developed to aid in determining the feasibility of passage
through gaps, and Bézier curves are used to define a safe nav-
igable gap that encapsulates both local environment dynamics
and ego-robot reachability. Artificial Harmonic Potential Field
(AHPF) methods that guarantee collision-free convergence to
the goal are then leveraged to generate safe local trajectories.
Monte Carlo benchmarking experiments are run in structured
simulation worlds with dynamic agents to showcase the benefits
that such formal safety guarantees provide.

I. INTRODUCTION

Collision avoidance is of utmost importance for safe robot
navigation. This task is typically handled by a local planner
which utilizes sensory information to evade obstacles. One
family of local planners is the gap-based planner [1], which
identifies passable regions, or “gaps”, and synthesizes motion
commands through them. With this emphasis on free space,
gap-based planners are an approach based on the affordances
of the environment [2], and they have shown great promise
with capabilities of respecting dynamic, visual, and geo-
metric constraints [3]–[7] as well as generating provably
collision-free trajectories [8].

Despite this success, gap-based planners have yet to be
explicitly extended to handling dynamic obstacle avoidance,
a challenge that accurately reflects the unknown, changing
environments of the real world. Reactive planners may
provide collision avoidance in certain circumstances, but
without formal safety guarantees, the performance of such
planners is limited. This research deficit suggests that gap-
based planners stand to benefit greatly from the field of
motion planning in dynamic environments.

1M. Asselmeier, and Y. Zhao are with the School of Mechanical
Engineering, Georgia Institute of Technology, Atlanta, GA 30308, USA.
mass@gatech.edu

2 P.A. Vela is with the School of Electrical and Computer Engineering
and the Institute for Robotics and Intelligent Machines, Georgia Institute of
Technology, Atlanta, GA 30308, USA.

*This work supported in part by NSF Award #1849333, #2144309 and
Georgia Tech IRIM/IPaT Aware Home Seed Grant.

Fig. 1. Visualization of gaps and trajectories generated by dynamic gap.
The central blue dot represents the ego-robot while the red dots represent
dynamic agents. Bolder dots denote the current agent poses while the
more transparent dots denote future agent poses. Magenta arcs represent
the instantaneous gaps obtained during Gap Detection (Section III-A.1),
and magenta arrows represent the gap state estimates (Section III-A.3).
Orange points represent the local gap goals, and green lines represent
the Bézier curves that define the navigable gaps - labeled A-G in the
figure - used during trajectory synthesis (Section III-C.2). Dashed blue lines
running through the navigable gaps labeled A-F represent the candidate
trajectories generated at the current time step (Section III-C.4). During the
Gap Feasibility Analysis step (Section III-B), Gap G is deemed infeasible,
resulting in the gap being discarded prior to trajectory synthesis.

This paper details an extension to prior work on the
potential gap planner [8], involving augmentations to the
planning framework to provide formal guarantees for safe
navigation in dynamic environments. This extension is re-
ferred to hereafter as the dynamic gap local planner and can
be visualized in Figure 1. Egocentric free space tracking is
integrated to develop predictions of how gaps will evolve
over time. These gap predictions along with known kinematic
constraints are used to ensure that the defined workspace
will remain as free space throughout the entire local time
horizon. The employment of this safe workspace in junction
with collision-free trajectory generation methods provides
formal safety guarantees in ideal settings. For this work,
ideal settings involve isolated gaps (no overlap between gaps
during the local time horizon), and a first-order, point-mass,
holonomic robot.

II. RELATED WORK

A. Motion Planning in Dynamic Environments

Methods for tracking and predicting dynamic obstacles
can be categorized into two approaches: model-based and
motion-based. Model-based methods involve classifying ob-
stacles from a predefined set of categories such as pedestrians

ar
X

iv
:2

21
0.

05
02

2v
1

 [
cs

.R
O

]
 1

0
O

ct
 2

02
2

or automobiles. This usually involves visual inferencing from
a learned classifier [9]. Model-based methods are advan-
tageous in that prediction models can be catered towards
specific behaviors or classes [10], and they can identify
objects in the scene that may not currently be moving but
could move in the future. However, these approaches usually
require a high level of confidence in the object classifier.

Motion-based methods involve detecting dynamic obsta-
cles from sensor-derived motion cues. Gap-based planners
fall into this category. These methods are advantageous in
that they will capture any moving artifact in the environ-
ment, but they are disadvantageous in that they model all
artifacts identically. To make obstacle predictions, motion-
based methods perform data clustering, data association,
and data estimation. Data clustering involves grouping input
data into individual obstacles or subsections of obstacles.
Data association involves finding pairings of clusters between
consecutive time steps. The most common method is to treat
this step as a Rectangular Assignment problem and solve
via the Hungarian Algorithm [11]. Other methods may be
used that are better suited for the problem domain [12].
Data estimation involves updating prediction models of the
dynamic obstacles. Obstacles can be geometrically modeled
in various ways: polygons or lines [13], circles [14], [15], or
sets of points [16]. Prediction models can be factored into
planning decisions through capturing them in cost functions
or constraints in MPC formulations [13], [17], or embedding
them in occupancy maps that can be searched over for paths
[18], [19]. The methods cited here assign prediction models
to individual obstacles and represent these prediction models
with respect to a fixed frame. Performing obstacle tracking
in the egocentric frame allows the local planner to leverage
the benefits of operating in the perception space.

B. Perception Space and Gap-based Navigation

A perception-space approach to planning involves keeping
sensory input in its raw egocentric form to take advantage of
the computational benefits that come with foregoing intensive
data processing. All local planning steps downstream are then
performed through an egocentric point of view. Prior work
from the authors has been done to develop a hierarchical
perception-space navigation stack. Specifically, efforts have
been made towards efficient collision checking [20], egocen-
tric environment representations [21], and local path plan-
ning [8], [22]. This hierarchical egocentric navigation stack,
including the contributions highlighted in this work, can be
seen in Figure 2. Gap-based planners typically function by
operating on 1D laser scans and generating egocentric gaps:
regions of collision-free space defined by either leading or
trailing edges of obstacles. These planners either synthesize
local trajectories or reactive control inputs through these gaps
[1], [3]–[5], [7]. Potential Gap explored how to simplify and
manipulate gap representations to uphold collision-free gap
passage guarantees for manually-crafted artificial potential
fields. To the authors’ knowledge, there are no gap-based
planners in the literature that are explicitly designed to
operate within dynamic environments.

Fig. 2. Information flow for egocentric hierarchical navigation stack,
including dynamic gap as the local planner. Red boxes represent input
perception data, blue boxes represent steps maintained from potential gap,
and green boxes represent novel steps that were either added or augmented.

C. Artificial Harmonic Potential Fields

Artificial Potential Fields (APFs) are motion planning
methods that obtain control inputs from the gradient of
a potential function that returns higher values closer to
obstacles and lower values closer to the goal [23], [24].
APFs encapsulate both safety and goal convergence through
fast and simple means, but a major drawback of APFs is
their tendency to have local minima due to complex world
geometries. Many innovations have been made to alleviate
such issues, one being Artificial Harmonic Potential Fields
(AHPFs) which by design exhibit no local minima within a
specified workspace [25], [26]. This is due to the fact that
the critical points of a harmonic function strictly occur at
saddle points, meaning that the robot may momentarily exist
at these points but it will not settle at them. Recent work has
explored algorithms that provide AHPFs for safe navigation
in unknown workspaces by constraining the resultant vector
field to point into the workspace at discrete points along the
workspace boundary. [27]. It has been proven that assuming
sufficient discretization, the resultant vector field will point
inwards along the entire boundary, guaranteeing collision-
free convergence to the goal position [28].

III. DYNAMIC GAP LOCAL PLANNING MODULE

This section details the approach that the proposed work
takes to planning through feasible dynamic gaps. By virtue
of the reachability-informed workspace, the resultant vector
field guarantees safe gap passage under ideal conditions.

A. Gap Detection, Association, and Estimation

1) Gap Detection and Simplification: Potential gap de-
fines a gap detection policy that operates on incoming

egocircle [22] data to detect the instantaneous static gaps
in the local environment. Gaps can either be classified as
radial, in which there is a significant instantaneous change in
range between consecutive scan points, or swept, in which
there is a significant span of scan indices with maximum
range values. Gap detection involves merging radial gaps into
swept gaps, the latter of which possess favorable properties
for planning such as high line-of-sight visibility. Dynamic
gap adopts these detection and simplification policies, ulti-
mately yielding a set of simplified gaps, Gsimp.

2) Gap Association: In static environments, solely gap
detection is required for safe navigation, but association is
now needed to understand how gaps evolve over time.

Each gap G ∈ Gsimp is comprised of a left and right point
pl, pr ∈ R2. Association is performed on the left and right
points of the simplified gaps, this set can be referred to as
Psimp. The association step is represented as a rectangular
assignment problem, where the cost is equivalent to the
distance between points across consecutive steps, P t−1

simp and
P t

simp. This assignment problem is then solved with the
Hungarian Algorithm, producing a minimum distance one-
to-one mapping between P t−1

simp and P t
simp. This association

determines which points to transition models from and to
across consecutive time steps. If the distance between two
associated points exceeds a threshold τassoc, then that point-
to-point association is discarded.

3) Gap Estimation: Given the desire to perform gap
estimation in the perception space, the prediction models
must represent the gap points with respect to the local robot
frame which is constantly changing. Therefore, the constant
velocity dynamics model taken with respect to the inertial
frame is augmented to allow for translations and rotations of
the robot. The state vector is defined as:

X =

[
ps/b
vs/b

]
=

[
ps − pb
vs − vb

]
, (1)

where ps/b and vs/b represent the two-dimensional position
and velocity of the gap side s (left or right) relative to the
robot body b, respectively. The system dynamics are then:

Ẋ =

[
ṗs/b
v̇s/b

]
=

[
vs/b − ωb × ps/b
−ab − ωb × vs/b

]
, (2)

where ωb represents the angular velocity of the robot and
ab represents the linear acceleration of the robot. All values
used for the estimator are represented in the body frame.

B. Gap Feasibility Analysis

Within static environments, gap feasibility solely depends
on whether or not the gap is wide enough to fit the robot.
For dynamic environments, additional considerations must be
made to determine whether or not the robot can pass through
the gap before the gap shuts. By pruning away infeasible
gaps, this step not only conserves energy of the robot, but
it also avoids potentially dangerous gaps through which it
would be difficult, if not impossible, for the robot to pass.

In order to remove the ego-robot motion from the gap
state and solely analyze the motion of the gap itself, the

gap-only dynamics are recovered from the prediction models
by adding the robot’s ego-velocity vb to the relative velocity
estimate vs/b to obtain the gap-only velocity vs.

1) Gap Categorization: Gap points can be categorized as
static, expanding, or shrinking depending on their side, left
or right, and their bearing rate of change, β̇:

Category =

Static if β̇l = 0 (or β̇r = 0)
Expanding if β̇l > 0 (or β̇r < 0),
Shrinking if β̇l < 0 (or β̇r > 0)

(3)

where β̇ can be calculated as follows:

β̇s =
ps,xvs,y − ps,yvs,x

p2
s,x + p2

s,y

. (4)

Gaps themselves can also be placed into the same categories
depending on the overall rate of change of the gap angle.
Define the angular size of gap G ∈ Gsimp as α. Then:

Category =

Static if α̇ = 0

Expanding if α̇ > 0

Shrinking if α̇ < 0

, (5)

where α̇ = β̇l − β̇r. Shrinking gaps are the only category
that can be deemed infeasible given that they are the only
category in which the gap can shut, signified by the left
and right bearings crossing one another. Determining at what
time this crossing occurs dictates whether or not the gap is
kinematically feasible for the robot.

2) Gap Propagation: Gap models are integrated forward
for a local time horizon T to determine the terminal gap
points. Gap points can terminate prior to the end of the time
horizon in two ways: if the gap closes, or if an expanding
gap point becomes reachable. If neither of these conditions
apply nor occur, the terminal points are set to the propagated
points at the end of the time horizon.

At each time step t during integration, a crossing condition
is checked. A bearing crossing is interpreted as the clockwise
angle of the gap switching from convex to non-convex when
both the left and right bearings pass across the center of the
gap. The clockwise angle condition is evaluated as:

(αt−1
cw > 0) ∧ (αt

cw < 0), (6)

where

αt
cw = arctan(

ηtl · ηtr
ηtl × ηtr

), (7)

and the unit bearing vector for the gap sides at time t, ηts, is
defined as:

ηts =
〈pts,x, pts,y〉
‖pts‖

. (8)

The condition for both bearings passing across the gap center
is evaluated as:

(ηtl · ηt−1
c > 0) ∧ (ηtl · ηt−1

c > 0), (9)

where ηtc refers to the unit bearing vector of the gap center.
The crossing condition is visualized in Figure 3.

Fig. 3. Crossing condition of a gap. At time step t− 1, the left and right
sides of the gap have yet to cross. At time step t, the gap sides have crossed,
as shown by the clockwise angle and gap center conditions.

In the case that the gap bearings have crossed, a further
evaluation is required to check if the gap has closed. For
this, a range proximity condition is checked:

‖ptl − ptr‖ < 2rinfl, (10)

where rinfl is the inflated radius of the robot. If the left and
right points are sufficiently close together at the crossing,
then the gap is closed. If a gap is deemed closed, the last
time step at which the robot can fit between the gap points
is used to set the terminal gap points.

The second terminal condition, for when expanding gap
points first become reachable, is used to preserve the
collision-free property of the gap. By terminating expanding
gap points when they become reachable, it is ensured that no
part of the gap point’s future trajectory that is reachable will
overlap with the gap, therefore guaranteeing that the gap is
a collision-free space. This condition is evaluated as:

‖pts‖ < vmaxt, (11)

where vmax is the maximum linear velocity of the robot.
This is a strict notion of reachability, assuming that the robot
will travel in a straight line at its maximum velocity to
intersect with the gap point’s trajectory.

3) Gap Feasibility Testing: Once the initial and terminal
gap points are set, a trajectory can be approximated to
determine if it is feasible for the robot to pass through the
gap during the local time horizon. This trajectory is estimated
using a cubic spline that is constructed from the initial and
terminal conditions of the robot and gap. If the maximum
velocity along the spline does not exceed the linear velocity
constraints of the robot, then the gap is deemed feasible.
This feasibility analysis returns a set of gaps, Gfeas, in which
candidate trajectories will be synthesized.

C. Gradient Field Construction

1) Gap Manipulation: Potential gap applies manipulation
steps to the gaps in Gsimp to ensure required gap properties
for guaranteeing collision-free passage such as convexity.
However, the trajectory synthesis method used in this work
[27] assumes an unknown workspace and only requires

that the boundary can be defined by a set of continuously
differentiable functions. Therefore, the only manipulation
step required is to inflate the gap boundary.

In static environments, it is only required to inflate a gap
angularly to account for the radius of the robot. However,
in dynamic environments, it is also required to inflate gaps
outwards radially. Gaps may be attached to moving agents,
so inflating the points outwards ensures that gap passage
is synonymous with the robot moving completely beyond
any agents potentially attached to the gap. This manipulation
step yields a set of gaps Gmanip that are suitable for use in
trajectory synthesis.

2) Navigable Gap Construction: When planning in static
environments, all free space within each gap G ∈ Gmanip is
navigable given that G persists without change for all time.
However, we must now consider what subset of the gap is
reachable at each future time step. To factor in this aspect,
the left and right sides of the navigable gaps are modeled as
weighted Bézier curves:

Bs(u) = (1−u2)O+2u(1−u)w0
sp

0
s+u2p1

s, u ∈ [0, 1], (12)

where O ∈ R2 is the origin of the Bézier curve, p0
s, p

1
s ∈

R2 are the initial and terminal gap points of G, and u is
the sliding variable used to parameterize the Bézier curve.
A weight w0

s is applied to the initial gap point and set to
w0

s = ‖vs‖/‖vmax‖. This weighting term works to lessen
the curvature of the Bézier curve, making the gap easier to
pass through while still respecting the gap dynamics.

3) Gap Goal Placement: Navigable gap goals are placed
within the angular span of the terminal gap bearings. For
closing gaps, goals are placed beyond the point at which
the gap points cross each other. For gaps that cross but
do not close, goals are placed between the crossing points.
Otherwise, goal placement is biased towards a navigation
waypoint taken from the global plan.

4) Artificial Harmonic Potential Field Construction: Dy-
namic environments can produce non-convex and unfavor-
able gap geometries in which it is difficult to guarantee
robustness for a manually designed gradient field. To address
this issue, we opt to leverage methods of automatically
synthesizing artificial harmonic potential fields online which
provide collision-free convergence guarantees. The involved
trajectory synthesis method will be briefly explained below,
and more implementation details can be found at [27].

Harmonic function terms are centered at K discrete points
along the weighted Bézier curves with one additional term
placed at the reachable gap goal, which will be denoted as
p0. These harmonic terms take the form of

vk(p; pk) = ln(‖p− pk‖), (13)

where p ∈ R2 is the point within the workspace at which the
term is evaluated and pk ∈ R2 is the point at which the term
is centered. The potential function Φ(p; pC) : R2×K+1 → R2

is constructed by taking a linear weighted combination of
these harmonic terms:

Φ(p; pC) = wT v(p; pC), (14)

where pC ∈ R2×K+1 represents the vector of harmonic term
centers and w ∈ RK+1 is a vector of weights applied to
the harmonic terms. The weights are obtained by solving a
Quadratic Program that minimizes ‖w‖ while enforcing an
inward-pointing vector field at the discrete points along the
boundary. The linear velocity commands obtained from the
vector field are then

u(p) = −||p− p0||2∇Φ(p; pC). (15)

An example navigable gap along with its corresponding
AHPF is shown in Figure 4.

Fig. 4. Example navigable gap and AHPF. The blue points correspond to
the trajectory of the left and right gap points, with the fading of the points
corresponding to the gap evolving over time.

Through this parameterization of the gap, collision-free
convergence to the gap goal is guaranteed.

5) Proof of Collision-Free Passage: Assumptions made
include an isolated, feasible gap characterized by constant
velocity points, an ideal robot (first-order, point-mass, holo-
nomic), and sufficient discretization of the gap boundary.

First, it will be shown that the navigable gap is comprised
solely of free space over the local time horizon. This can
be done by proving each gap side category separately. For
static gap sides, this is trivial given that the gap side does
not evolve over time. For closing gap sides, the Bézier curve
divides the inside of the curve from the line segment between
the two control points that represent the gap point trajectory.
Therefore, the entire gap point trajectory lies outside of the
navigable gap. For opening gap sides, if the terminal gap
point is not reachable by the robot, then no part of the gap
point trajectory is at risk of collision. If the terminal gap
point is set to the first reachable point along the gap point’s
trajectory, gap inflation prevents this point from leading to a
collision. Therefore, the entire navigable gap is collision-free
during the local time horizon.

Next, it will be shown that the resultant vector field
generates collision-free trajectories. Prior work demonstrates
that the employed AHPF guarantees safety over the entire
boundary of the workspace as long as the workspace bound-
ary is discretized with a sufficient number of points [28]. The

minimum number of points required, N0 can be found from
an inequality derived from a Taylor Series expansion of the
curves that define the workspace boundary. This inequality
is detailed in the Theorem 1 of [28]. We implemented this
inequality on the gaps used in this work and found that N0

typically falls on the range of [10, 15]. In implementation,
the discrete number of points is set to N = 25 to avoid the
computation of repeatedly evaluating this inequality, and this
is assumed to be sufficient discretization.

Finally, it must also be shown for closing gaps that the
robot reaches the goal prior to the gap shutting. Since the gap
is assumed to be feasible, there exists a feasible timescale
that can be applied to the synthesized trajectory to ensure
that the robot passes the gap before it closes.

D. Trajectory Synthesis, Scoring, and Switching

1) Trajectory Synthesis: In practice, the raw signal ob-
tained from the AHPF was found to be small in magnitude,
so the resulant velocities are scaled to provide a reasonable
control signal. Forward integration is then performed on the
resulting AHPFs for the local time horizon T to obtain a set
of candidate trajectories.

2) Trajectory Scoring: Trajectories are scored in a sim-
ilar manner as potential gap: based on their proximity to
obstacles and their distance from the desired direction to
the goal. A trajectory cost is comprised of a cumulative
egocentric pose-wise cost based on the proximity to the
current egocircle and a terminal pose cost based on proximity
to a waypoint obtained from the global plan. In order
to account for the evolution of the egocircle during the
execution of the candidate trajectory, the odometries of
dynamic agents are forward propagated and the egocircle
is augmented accordingly. The highest-scoring candidate
trajectory is compared to the currently executing trajectory
to determine if a trajectory change should occur, as detailed
in the next section.

3) Trajectory Switching: The core idea behind safe hi-
erarchical planners involves chaining together multiple safe
local trajectories. Therefore, a method of triggering a switch
to a newly synthesized local trajectory must be defined.
Local trajectory switching is performed if the currently
executing trajectory is deemed unsafe (either due to a future
collision or due to the current gap being deemed infeasible),
if the currently executing trajectory has ended, or if the
prediction models that characterize the currently executing
gap have been discarded during the gap point association
step. If any of these situations arise, a switch to the highest-
scoring candidate trajectory is triggered. If there are no valid
candidate trajectories to switch to, then an obstacle avoidance
policy is enacted until a candidate trajectory is synthesized.

IV. EXPERIMENTS AND OUTCOMES

This section details the experiments performed between
the proposed dynamic gap planner and the state-of-the-art
Timed-Elastic-Bands (TEB) planner [13], which includes
an extension for handling dynamic obstacles [29]. This
extension performs blob detection on the fixed frame local

Fig. 5. Collision percentage of dynamic gap (DG) and dynamic TEB (DT) vs. field of view. Single gap benchmarks are shown in subplot (a). Navigation
benchmark performance along with observed failure modes for dynamic gap and dynamic TEB are shown in subplots (b) and (c) respectively.

costmap to identify obstacles and employs constant velocity
Cartesian Kalman filters for tracking.

First, single gap benchmarks were performed in the Simple
Two-Dimensional Robot (STDR) simulator [30] to confirm
the collision-free properties that dynamic gap provides. Pairs
of agents are randomly assigned a gap category (static,
shrinking, or expanding) along with a speed (0.15, 0.30, or
0.45 m/s). Agent pairs are then spawned in an empty world
with the ego-robot, and the ego-robot is to pass through the
gap. This set up is meant to closely recreate the ideal settings
under which the proof of collision-free gap passage is given.
100 trials were run for both dynamic gap and dynamic TEB,
and the results are shown in subplot (a) of Figure 5. As
expected, zero collisions were observed for dynamic gap
whereas 19 were observed for dynamic TEB.

Second, navigation benchmarks are also run in STDR.
Random unknown obstacles, both static and dynamic, are
spawned throughout the world. Dynamic agents are given
random start and goal poses along with a simple global path
tracking controller. Four benchmarking worlds are utilized:
the Dense, Campus, Office, and Sector worlds. The Campus
and Office worlds can be seen in Figure 6. An agent density
of 0.035 agents/m2 of free space is used in an attempt
to normalize the difficulty of navigation across the worlds.
Depending on the map size, this density yielded 16 − 74
agents in total. The navigation planners are also tested at
three fields of view: 180◦, 270◦, and 360◦. Each setting
is run with 50 unique random initial seeds in each world.
Experiments are run on an Intel Core i7 processor.

Subplots (b) and (c) in Figure 5 provide the results of
dynamic gap and dynamic TEB respectively along with a
breakdown of the failure modes observed. These modes
include aborts when the planner fails to find a realizable path
to the goal, collisions with static artifacts in the environment
such as walls or scattered obstacles, and collisions with
the dynamic agents. Despite these benchmarks violating the
assumptions for collision-free gap passage, the underlying
framework of dynamic gap still leads the planner to out-
perform TEB by roughly 30% across the three fields of
view tested. TEB leverages a soft-constraint time-optimal

Fig. 6. Campus (left) and Office (right) World in STDR simulator, with
dynamic agents (red) and ego-robot (blue).

approach to local path planning. Therefore, no guarantees
for collision avoidance can be made. This factor contributes
significantly to the high collision rates observed for TEB. A
majority of the collisions observed across both planners were
due to collisions with the dynamic agents. A small number
of the dynamic gap runs resulted in collisions with the static
environment, but no runs result in an abort. Dynamic TEB
shows the opposite trend, with some runs ending in an abort,
but no runs resulting in static collisions.

V. CONCLUSION

This paper proposes an extension to an existent egocen-
tric hierarchical navigation stack which involves adapting
local gap-based planners to dynamic environments. This
is accomplished through tracking the free space evolution
relative to the egocentric frame, constructing collision-free
navigable gaps based on gap dynamics and robot reachability,
and synthesizing collision-free trajectories through Artificial
Harmonic Potential Field methods. Navigation benchmarks
showcase that the proposed work outperforms a state-of-the-
art local planner that is also extended to dynamic environ-
ments. This code is open-sourced as a ROS package [31].

This work investigates methods of ensuring formal guar-
antees for safe navigation regarding trajectory generation for
gap-based planners in dynamic environments. Future work
will involve extending this framework to additionally provide
formal guarantees for online trajectory execution as well as
non-ideal robot dynamics such as nonholonomic or legged
systems through the utilization of barrier functions.

REFERENCES

[1] M. Mujahad, D. Fischer, B. Mertsching, and H. Jaddu, “Closest
gap based (cg) reactive obstacle avoidance navigation for highly
cluttered environments,” in 2010 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2010, pp. 1805–1812.

[2] J. J. Gibson, The Ecological Approach to Visual Perception. Boston:
Houghton Mifflin, 1979.

[3] V. Sezer and M. Gokasan, “A novel obstacle avoidance algorithm:
“follow the gap method”,” Robotics and Autonomous Systems, vol. 60,
no. 9, pp. 1123–1134, 2012.

[4] M. Mujahed and B. Mertsching, “The admissible gap (ag) method for
reactive collision avoidance,” in 2017 IEEE International Conference
on Robotics and Automation (ICRA), 2017, pp. 1916–1921.

[5] M. Mujahed, D. Fischer, and B. Mertsching, “Safe gap based (sg)
reactive navigation for mobile robots,” in 2013 European Conference
on Mobile Robots, 2013, pp. 325–330.

[6] M. Mujahed and B. Mertsching, “A new gap-based collision avoidance
method for mobile robots,” in 2016 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR), 2016, pp. 220–226.

[7] M. Mujahed, H. Jaddu, D. Fischer, and B. Mertsching, “Tangential
closest gap based (tcg) reactive obstacle avoidance navigation for
cluttered environments,” in 2013 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR), 2013, pp. 1–6.

[8] R. Xu, S. Feng, and P. A. Vela, “Potential gap: A gap-informed
reactive policy for safe hierarchical navigation,” IEEE Robotics and
Automation Letters, vol. 6, no. 4, pp. 8325–8332, 2021.

[9] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, Trajec-
tron++: Dynamically-Feasible Trajectory Forecasting with Heteroge-
neous Data, 12 2020, pp. 683–700.

[10] L. Zhao and C. Thorpe, “Qualitative and quantitative car tracking
from a range image sequence,” in Proceedings. 1998 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (Cat.
No.98CB36231), 1998, pp. 496–501.

[11] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[12] D. Z. Wang, I. Posner, and P. Newman, “Model-free detection and
tracking of dynamic objects with 2d lidar,” The International Journal
of Robotics Research, vol. 34, no. 7, pp. 1039–1063, 2015.

[13] C. Rösmann, F. Hoffmann, and T. Bertram, “Timed-elastic-bands for
time-optimal point-to-point nonlinear model predictive control,” in
2015 European Control Conference (ECC), 2015, pp. 3352–3357.

[14] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using the relative velocity paradigm,” in [1993] Proceedings IEEE
International Conference on Robotics and Automation, 1993, pp. 560–
565 vol.1.

[15] J. van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obsta-
cles for real-time multi-agent navigation,” in 2008 IEEE International
Conference on Robotics and Automation, 2008, pp. 1928–1935.

[16] S. Vaskov, S. Kousik, H. Larson, F. Bu, J. Ward, S. Worrall,
M. Johnson-Roberson, and R. Vasudevan, “Towards provably not-at-
fault control of autonomous robots in arbitrary dynamic environments,”
02 2019.

[17] M. Gaertner, M. Bjelonic, F. Farshidian, and M. Hutter, “Collision-
free mpc for legged robots in static and dynamic scenes,” 2021-04, p.
1550.

[18] R. Senanayake, L. Ott, S. O' Callaghan, and F. T. Ramos, “Spatio-
temporal hilbert maps for continuous occupancy representation in
dynamic environments,” in Advances in Neural Information Processing
Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,
Eds., vol. 29. Curran Associates, Inc., 2016.

[19] V. Guizilini, R. Senanayake, and F. Ramos, “Dynamic hilbert maps:
Real-time occupancy predictions in changing environments,” in 2019
IEEE International Conference on Robotics and Automation (ICRA),
2019, pp. 4091–4097.

[20] J. S. Smith and P. Vela, “Pips: Planning in perception space,” in 2017
IEEE International Conference on Robotics and Automation (ICRA),
2017, pp. 6204–6209.

[21] J. S. Smith, S. Feng, F. Lyu, and P. A. Vela, Real-Time Egocentric
Navigation Using 3D Sensing. Cham: Springer International Pub-
lishing, 2020, pp. 431–484.

[22] J. S. Smith, R. Xu, and P. Vela, “egoteb: Egocentric, perception space
navigation using timed-elastic-bands,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp. 2703–
2709.

[23] D. Koditschek, “Exact robot navigation by means of potential func-
tions: Some topological considerations,” in Proceedings. 1987 IEEE
International Conference on Robotics and Automation, vol. 4, 1987,
pp. 1–6.

[24] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Proceedings. 1985 IEEE International Conference on
Robotics and Automation, vol. 2, 1985, pp. 500–505.

[25] J.-O. Kim and P. Khosla, “Real-time obstacle avoidance using har-
monic potential functions,” IEEE Transactions on Robotics and Au-
tomation, vol. 8, no. 3, pp. 338–349, 1992.

[26] S. G. Loizou, “Closed form navigation functions based on harmonic
potentials,” in 2011 50th IEEE Conference on Decision and Control
and European Control Conference, 2011, pp. 6361–6366.

[27] P. Rousseas, C. P. Bechlioulis, and K. J. Kyriakopoulos, “Trajectory
planning in unknown 2d workspaces: A smooth, reactive, harmonics-
based approach,” IEEE Robotics and Automation Letters, vol. 7, no. 2,
pp. 1992–1999, 2022.

[28] P. Rousseas, C. Bechlioulis, and K. J. Kyriakopoulos, “Harmonic-
based optimal motion planning in constrained workspaces using re-
inforcement learning,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 2005–2011, 2021.

[29] C. Rösmann, F. Hoffmann, and T. Bertram, “Track and include
dynamic obstacles via costmap converter,” 2018. [Online]. Available:
http://wiki.ros.org/teb local planner

[30] A. T. M. Tsardoulias and C. Zalidis, “stdr simulator - ros wiki,”
2014. [Online]. Available: http://wiki.ros.org/stdr simulator

[31] M. Asselmeier, Y. Zhao, and P. A. Vela, “Dynamic gap.” [Online].
Available: https://github.com/ivaROS/DynamicGap

http://wiki.ros.org/teb_local_planner
http://wiki.ros.org/stdr_simulator
https://github.com/ivaROS/DynamicGap

	I Introduction
	II Related Work
	II-A Motion Planning in Dynamic Environments
	II-B Perception Space and Gap-based Navigation
	II-C Artificial Harmonic Potential Fields

	III Dynamic Gap Local Planning Module
	III-A Gap Detection, Association, and Estimation
	III-A.1 Gap Detection and Simplification
	III-A.2 Gap Association
	III-A.3 Gap Estimation

	III-B Gap Feasibility Analysis
	III-B.1 Gap Categorization
	III-B.2 Gap Propagation
	III-B.3 Gap Feasibility Testing

	III-C Gradient Field Construction
	III-C.1 Gap Manipulation
	III-C.2 Navigable Gap Construction
	III-C.3 Gap Goal Placement
	III-C.4 Artificial Harmonic Potential Field Construction
	III-C.5 Proof of Collision-Free Passage

	III-D Trajectory Synthesis, Scoring, and Switching
	III-D.1 Trajectory Synthesis
	III-D.2 Trajectory Scoring
	III-D.3 Trajectory Switching

	IV Experiments and Outcomes
	V Conclusion
	References

